(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Ideal gas initially at temperature Ti, Pressure Pi, Volume Vi is compressed reversibly down to half its original volume. Temperature of gas is varied during the compression so that

P = AV is always satisfied [where A is a constant]

Show that the work done on the gas is:

-[itex]\frac{3}{8}[/itex]nRTi

2. Relevant equations

W = ∫ Pdv

W = nRT ln([itex]\frac{Vf}{Vi}[/itex])

W = A[itex]\frac{Vf-Vi}{1-\gamma}[/itex]

[itex]\gamma[/itex] = [itex]\frac{Cp}{Cv}[/itex]=[itex]\frac{N+2}{N}[/itex] where N is the degree of freedom (3 in this case)

3. The attempt at a solution

I gather that the solution is already in one of those equations and that I am probably being stupid. Yet everything I have tried so far does not get me to the solution.

From the problem I understand that the process is adiabatic since process is reversible and temperature changes to give:

[itex]\frac{P}{V}[/itex]=const.

which I am confused on since:

PV^[itex]\gamma[/itex]=const

I understand that this may be against the policy of this forum, but would anyone mind showing me how to arrive at this solution? I learn best from examples.

Thank you

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Showing work done on gas in a reversible process

**Physics Forums | Science Articles, Homework Help, Discussion**