Find the change in entropy for an ideal gas undergoing a reversible process

  • #1
mcas
24
5
Homework Statement
An ideal gad had a temperature ##T_1## and volume ##V_1##. As a result of a reversible process, these quantities changed to ##T_2## and ##V_2##. Find the change in entropy.
Relevant Equations
##pV=nRT##
##\delta Q = TdS##
##dU = \delta Q + \delta W##
##U = \frac{3}{2}kT##
We know that
$$dU=\delta Q + \delta W$$
$$dU = TdS - pdV$$
So from this:
$$dS = \frac{1}{T}dU + \frac{1}{T}pdV \ (*)$$
For an ideal gas:
$$dU = \frac{3}{2}nkdT$$
Plugging that into (*) and also from ##p=\frac{nRT}{V}## we get:
$$S = \frac{3}{2}nk \int^{T_2}_{T_1} \frac{1}{T}dT + R\int^{V_2}_{V_1} \frac{1}{V}dV$$

And so on...

Is this the correct approach to solve this problem? I'm not really sure because I'm still new to thermodynamics.
 
Physics news on Phys.org
  • #2
Your approach looks good. A couple of things, though.

mcas said:
##U = \frac{3}{2}kT##
This equation is for a monatomic ideal gas and it's missing a factor of ##N## (the number of molecules). But the question does not specify that the gas is monatomic. So, you'll need a more general expression for ##U## (usually expressed in terms of the number of moles ##n##, the molar heat capacity at constant volume, ##C_V##, and ##T##).

$$S = \frac{3}{2}nk \int^{T_2}_{T_1} \frac{1}{T}dT + R\int^{V_2}_{V_1} \frac{1}{V}dV$$
The first term should be corrected according to the remarks above. The second term is missing a factor. Can you spot it?
 
  • Like
Likes etotheipi and mcas
  • #3
TSny said:
So, you'll need a more general expression for ##U## (usually expressed in terms of the number of moles ##n##, the molar heat capacity at constant volume, ##C_V##, and ##T##).
Ok, thank you. I think I know which one :smile:

TSny said:
The first term should be corrected according to the remarks above. The second term is missing a factor. Can you spot it?
I missed ##n##, right?

Thank you, this means very much! Now I have the motivation to do more problems 😁
 
  • Like
Likes etotheipi and TSny
  • #4
mcas said:
I missed ##n##, right?
Yes.
 
  • Like
Likes mcas

Similar threads

Replies
1
Views
977
Replies
3
Views
805
Replies
2
Views
542
Replies
7
Views
506
Back
Top