omidj
- 3
- 1
- TL;DR Summary
- Transformation equations from Schwarzschild coordinate and metric to Minkowski space time
Is there any direct transformation equations from schwarzschild coordinate components of time and distance to a flat Minkowsky space time?
These basis vectors seem to be capable of producing the Shwarzschild metric:
et=√(1-rs/r)cosh(ct) eT +√(1-rs/r)sinh(ct) eR
er=(1/√(1-rs/r))sinh(ct) eT +(1/√(1-rs/r))cosh(ct) eR
(et&er for Schwarzschild and eT&eR for Minkowsky) But when Jacobian matrix is derived, the problem emerges ...
These basis vectors seem to be capable of producing the Shwarzschild metric:
et=√(1-rs/r)cosh(ct) eT +√(1-rs/r)sinh(ct) eR
er=(1/√(1-rs/r))sinh(ct) eT +(1/√(1-rs/r))cosh(ct) eR
(et&er for Schwarzschild and eT&eR for Minkowsky) But when Jacobian matrix is derived, the problem emerges ...