Deriving the Fourier Transform of the Signum Function and Proving its Properties

Click For Summary
The discussion focuses on deriving the Fourier transform of the signum function and proving its properties. The Fourier transform is initially stated as S(ν) = 1/(jπν), and participants explore how to show that j2πνS(ν) equals 2 without directly deriving S(ν). The conversation highlights that S(0) should equal 0, despite an initial calculation suggesting it approaches infinity, emphasizing the need for a proper derivation. Ultimately, the Fourier transform of the derivative of the signum function leads to the conclusion that the Dirac delta function's contribution simplifies the expression, clarifying the result.
roam
Messages
1,265
Reaction score
12

Homework Statement


The signum function is defined by$$sgn(t)=\left\{\begin{matrix}-1, \ t<0\\0, \ t=0 \\ 1, \ t>0 \end{matrix}\right.$$It has derivative$$\frac{d}{dt} sign(t) = 2 \delta(t)$$Use this result to show that ##j2\pi \nu S(\nu)=2,## and give an argument why ##S(0)=0.## Where ##S(\nu)## denotes the Fourier transform of the signum function

The Attempt at a Solution



I know that the Fourier transform of the sign function is:$$S(\nu)=\frac{1}{j\pi \nu}.$$
If we substitute this into ##j2\pi \nu S(\nu),## we get ##2## as expected. But the question wants us to show this result without deriving an expression for the Fourier transform of ##sgn(t).## How can we do this?

Furthermore, if we substitute ##0## in ##S(\nu)## we get ##S(0)=1/j\pi (0) = \infty.## So what does the question mean by giving an argument that ##S(0)=0##?
 
Physics news on Phys.org
If the F.T. of ## f(t) ## is ## F(\nu) ##, isn't F.T. ## f'(t)=j \nu F(\nu) ## ? (with possibly a factor of ## 2\pi ## depending on your definition of F.T. and your frequency variable.) And you can readily compute the F.T. of the delta function..I don't have a good answer for the S(0)=0 yet...editing...For S(0), it appears the function ## S(\nu) ## goes symmetrically from minus infinity to plus infinity near ## \nu=0 ##...
 
Last edited:
Don't trust a given formula for S(v) here. You can derive S(0) yourself, and the result should be zero.
 
mfb said:
Don't trust a given formula for S(v) here. You can derive S(0) yourself, and the result should be zero.

How would you derive ##S(0)##? Did you use the sifting property ##S(0)=\int^\infty_{-\infty} \delta (t) \frac{1}{j \pi \nu} d\nu## or some other method?
 
roam said:
How would you derive ##S(0)##? Did you use the sifting property ##S(0)=\int^\infty_{-\infty} \delta (t) \frac{1}{j \pi \nu} d\nu## or some other method?
Why not use ## S(\nu)=\int sgn(t)exp(-i 2\pi \nu t) dt ## and set ## \nu=0 ##. The function is odd so the integral is 0. See also my post #2.
 
  • Like
Likes mfb and roam
So using the property ##\frac{d f(t)}{dt} \leftrightarrow j 2 \pi \nu F(\nu),## we will have:

$$2 \delta (t) = j 2 \pi \nu S(\nu).$$

But according to the question this should be equal to just ##2.## How do I make the Dirac delta disappear?
 
roam said:
So using the property ##\frac{d f(t)}{dt} \leftrightarrow j 2 \pi \nu F(\nu),## we will have:

$$2 \delta (t) = j 2 \pi \nu S(\nu).$$

But according to the question this should be equal to just ##2.## How do I make the Dirac delta disappear?
Simple: ## 2\pi j \nu S(\nu)=F.T.( 2 \delta(t)) ##. The F.T. of the delta function is 1.
 
  • Like
Likes roam
Thank you, that makes perfect sense now.
 
  • Like
Likes Charles Link

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K