Similarity transformation, basis change and orthogonality

Click For Summary

Discussion Overview

The discussion revolves around the properties of similarity transformations, specifically focusing on the implications of changing bases using non-orthogonal matrices and the conditions under which norms are preserved. Participants explore the relationship between orthogonality and transformations represented by matrices in different bases.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that a transformation represented by an orthogonal matrix leaves the norm unchanged, and thus a similarity transformation should also preserve norms.
  • Others question whether the assumption that the transformed matrix remains orthogonal is valid, suggesting that it may not hold for non-orthogonal matrices.
  • A participant points out that while ##B^TB=I## is a solution, it may not be the only one, indicating uncertainty about the uniqueness of the solution.
  • There is a discussion about the implications of orthogonal transformations and their representations in general bases, with some arguing that an orthogonal transformation may not be represented by an orthogonal matrix in a non-orthonormal basis.
  • Several participants discuss how to determine orthogonality in new basis representations, emphasizing the need to consider the inner product associated with the new basis.
  • One participant highlights the importance of transforming vectors back to the standard basis to compute norms and check orthogonality.

Areas of Agreement / Disagreement

Participants express differing views on the implications of changing bases and the conditions for orthogonality. There is no consensus on whether the transformation ##B^{-1}AB## must be orthogonal, and the discussion remains unresolved regarding the assumptions made about the matrices involved.

Contextual Notes

Participants note that the representation of an orthogonal transformation may vary depending on the basis used, and the definition of norms may also depend on the inner product matrix in the new basis.

Azad Koshur
Messages
7
Reaction score
0
I've a transformation ##T## represented by an orthogonal matrix ##A## , so ##A^TA=I##. This transformation leaves norm unchanged.

I do a basis change using a matrix ##B## which isn't orthogonal , then the form of the transformation changes to ##B^{-1}AB## in the new basis( A similarity transformation).

Since we only changed our representation of the transformation ##T## then transformation ##B^{-1}AB## should also leave norm unchanged which means that ##B^{-1}AB## should be orthogonal.

Therefore ##B^{-1}AB.{{[B^{-1}AB}}]^T=I##.

This suggests that ##B^TB=I## which means it is orthogonal, but that is a contradiction.

Can anyone tell me if what I did wrong.
Thank you.
 
Physics news on Phys.org
Azad Koshur said:
I've a transformation ##T## represented by an orthogonal matrix ##A## , so ##A^TA=I##. This transformation leaves norm unchanged.

I do a basis change using a matrix ##B## which isn't orthogonal , then the form of the transformation changes to ##B^{-1}AB## in the new basis( A similarity transformation).

Since we only changed our representation of the transformation ##T## then transformation ##B^{-1}AB## should also leave norm unchanged which means that ##B^{-1}AB## should be orthogonal.

Therefore ##B^{-1}AB.{{[B^{-1}AB}}]^T=I##.

This suggests that ##B^TB=I## which means it is orthogonal, but that is a contradiction.

Can anyone tell me if what I did wrong.
Thank you.
You say it suggests ##B^TB=I##, but does it imply it?
 
martinbn said:
You say it suggests ##B^TB=I##, but does it imply it?
##B^TB=I## is a solution but I'm not sure it's the only one.
 
For instance let ##\mathbb A=\mathbb 1##. Then there are no additional requirements upon ##\mathbb B## and your supposition is manifestly incorrect.
 
Azad Koshur said:
##B^TB=I## is a solution but I'm not sure it's the only one.
Let's look at your equation:
$$B^{-1}AB(B^{-1}AB)^T = I \ \Leftrightarrow \ AB(B^TA^T(B^{-1})^T) = B$$$$\Leftrightarrow \ ABB^TA^T(B^T)^{-1} = B \ \Leftrightarrow \ ABB^TA^T = BB^T$$And we can see that if ##A## is orthogonal, then this equation holds whenever ##BB^T## is invariant under the transformation ##X \ \rightarrow \ AXA^T##.

So, perhaps your assumption that ##B^{-1}AB## is orthogonal is false? Did you try to prove it?
 
PeroK said:
Let's look at your equation:
$$B^{-1}AB(B^{-1}AB)^T = I \ \Leftrightarrow \ AB(B^TA^T(B^{-1})^T) = B$$$$\Leftrightarrow \ ABB^TA^T(B^T)^{-1} = B \ \Leftrightarrow \ ABB^TA^T = BB^T$$And we can see that if ##A## is orthogonal, then this equation holds whenever ##BB^T## is invariant under the transformation ##X \ \rightarrow \ AXA^T##.

So, perhaps your assumption that ##B^{-1}AB## is orthogonal is false? Did you try to prove it?
Wikipedia says :
"In linear algebra, two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix P such that

##{\displaystyle B=P^{-1}AP.}##
{\displaystyle B=P^{-1}AP.}

Similar matrices represent the same linear map under two (possibly) different bases, with P being the change of basis matrix"
In our case A was the transformation and ##B^{-1}AB## was the transformation in another basis. Since the underlying transformation preserves norm then ##B^{-1}AB## has to persevere it as well. But all norm preserving matrices are orthogonal so ##B^{-1}AB## has to be as well.
Where does this argument go wrong?

Link:https://en.m.wikipedia.org/wiki/Matrix_similarity
 
hutchphd said:
For instance let ##\mathbb A=\mathbb 1##. Then there are no additional requirements upon ##\mathbb B## and your supposition is manifestly incorrect.
But I don't see where the argument went wrong?
 
You have assumed the matrix B to not be orthogonal but then show that it can be orthogonal. This is not the same as showing it must be orthogonal and does not serve as negation.
 
Azad Koshur said:
Wikipedia says :
"In linear algebra, two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix P such that

##{\displaystyle B=P^{-1}AP.}##
{\displaystyle B=P^{-1}AP.}

Similar matrices represent the same linear map under two (possibly) different bases, with P being the change of basis matrix"
In our case A was the transformation and ##B^{-1}AB## was the transformation in another basis. Since the underlying transformation preserves norm then ##B^{-1}AB## has to persevere it as well. But all norm preserving matrices are orthogonal so ##B^{-1}AB## has to be as well.
Where does this argument go wrong?

Link:https://en.m.wikipedia.org/wiki/Matrix_similarity
An orthogonal transformation may not be represented by an orthogonal matrix in a general basis - although always in an orthonormal basis. Your transformation may be norm-preserving, but the matrix representation in a general basis may not be orthogonal.
 
  • Like
Likes   Reactions: Azad Koshur and hutchphd
  • #11
Azad Koshur said:
Since we only changed our representation of the transformation then transformation should also leave norm unchanged
yes but how is this norm presented in this new basis?

In general if ##G## is a matrix of the inner product then the orthogonality of a matrix ##A## means that ##A^TGA=I##
 
  • Like
Likes   Reactions: Azad Koshur
  • #12
PeroK said:
An orthogonal transformation may not be represented by an orthogonal matrix in a general basis - although always in an orthonormal basis. Your transformation may be norm-preserving, but the matrix representation in a general basis may not be orthogonal.

PeroK said:
An orthogonal transformation may not be represented by an orthogonal matrix in a general basis - although always in an orthonormal basis. Your transformation may be norm-preserving, but the matrix representation in a general basis may not be orthogonal.
Yes got it now.
 
  • #13
I think the really interesting question here is, given two vectors ##x=(x_1,...,x_n)## and ##y=(y_1,...,y_n)## in the new basis representation, how do you decide if they are orthogonal?
 
  • #14
Office_Shredder said:
I think the really interesting question here is, given two vectors ##x=(x_1,...,x_n)## and ##y=(y_1,...,y_n)## in the new basis representation, how do you decide if they are orthogonal?
I think represent those into orthogonal basis coordinates and then calculate the norm using the usual way
 
  • #15
Azad Koshur said:
I think represent those into orthogonal basis coordinates and then calculate the norm using the usual way

That's right. So when you say a matrix is orthogonal, you are making a claim about the rows and columns being orthogonal (notice matrix multiplication of the matrix with its transpose is doing the dot product of the rows and the columns). But if you have the matrix represented in the new basis, you would first have to transform the matrix back to being in the old basis before computing all those dot products to decide if it's orthogonal.
 
  • #16
Office_Shredder said:
I think the really interesting question here is, given two vectors ##x=(x_1,...,x_n)## and ##y=(y_1,...,y_n)## in the new basis representation, how do you decide if they are orthogonal?
Using the inner product of the new basis vectors, of course!
 
  • #17
Office_Shredder said:
I think the really interesting question here is, given two vectors ##x=(x_1,...,x_n)## and ##y=(y_1,...,y_n)## in the new basis representation, how do you decide if they are orthogonal?
Here ##x_i## is the coefficient of the new basis vector ##e'_i##?
 
  • #18
PeroK said:
Using the inner product of the new basis vectors, of course!
We can't use ##x^T x## as the definition of norm here I think.
 
  • #19
wrobel said:
yes but how is this norm presented in this new basis?

In general if ##G## is a matrix of the inner product then the orthogonality of a matrix ##A## means that ##A^TGA=I##
Yes I was thinking the norm will still be given by the same way i did in the old basis. In this new basis I would convert the vectors back to standard basis by a matrix ##P##, then the norm will be just ##x^Tx## (considering real elements only).
 
  • #20
Kashmir said:
Here ##x_i## is the coefficient of the new basis vector ##e'_i##?

That's correct

Kashmir said:
We can't use ##x^T x## as the definition of norm here I think.

This is also right. You have to transform the coordinates to a basis where the dot product is valid.
 
  • #21
As I understand, Ortho matrices do not just preserve the norm , but preserve the inner-product. Edit: meaning : <x,y>=<Tx, Ty> , for T orthogonal and <,> an inner product. Note that angles between vectors are also preserved.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 52 ·
2
Replies
52
Views
4K