Simple but frustrating confusion on definition of bounded function

Click For Summary
The discussion centers on the definition of a bounded function, specifically regarding f(x,y) = 1/x and its continuity. It clarifies that f(x,y) is not defined at x=0, making it unbounded on the closed rectangle [0,1]x[0,1]. The confusion arises from the textbook's assertion that continuous functions on closed regions are always bounded, which does not apply here since f is not continuous at x=0. Participants confirm that f is only defined on the interval (0,1]x[0,1], reinforcing that it cannot be considered bounded. Ultimately, the misunderstanding stems from misinterpreting the conditions under which the boundedness definition applies.
HJ Farnsworth
Messages
126
Reaction score
1
Hi everyone,

I came across something in my vector calculus textbook (Marsden and Tromba, Edition 5, p. 327) that is confusing me.

"A function f(x,y) is said to be bounded if there is a number M>0 such that -M<=f(x,y)<=M for all (x,y) in the domain of f. A continuous function on a closed rectangle is always bounded, but, for example, f(x,y) = 1/x on (0,1]x[0,1] is continuous but is not bounded, because 1/x becomes arbitrarily large for x near 0. The rectangle (0,1]x[0,1] is not closed, because the endpoint 0 is missing in the first factor."

I do not see how f(x,y) = 1/x could possibly be considered bounded on the closed rectangle [0,1]x[0,1] by the definition given - it still approaches infiniti for x near 0. There is clearly no M for which f(x,y) <= M for all (x,y) in the domain of f, be it on [0,1]x[0,1] or (0,1]x[0,1]. And yet, it is stated, without explanation, that the function is bounded on this rectangle.

I looked at some other sources to try to find a different definition of bounded that might clear up some of the confusion, but to no avail (Wikipedia has an equivalent definition and also says that a continuous function on a closed region is always bound).

Does anyone know what the deal is?

Thanks,

HJ Farnsworth
 
Mathematics news on Phys.org
f(x,y) = 1/x does not exist on the closed rectangle [0,1]x[0,1], but can only exist on (0,1]x(0,1]. It is namely not defined at 0 (so you cannot just add 0 and close the interval), and, hence, you are right, it is not bounded. Note that even if you did define it piecewise to have a value at 0, then it would not be continuous, since it approaches plus infinity as x goes to zero.
 
Thank you, I think I understand now.

The definition said every continuous function on a closed rectangle is always bounded. f(x,y)=1/x does not exist at x=0 and cannot be considered continuous at x=0. So as I thought, it is unbounded on the rectangle [0,1]x[0,1].

My mistake was in thinking that the text was implying that f was bounded on the closed rectangle, when in fact it was not, since f is not continuous on that interval and thus need not be bounded by the given definition.

Does that sound correct?

Again, many thanks.

-HJ Farnsworth
 
Ryker said:
f(x,y) = 1/x does not exist on the closed rectangle [0,1]x[0,1], but can only exist on (0,1]x(0,1]. It is namely not defined at 0 (so you cannot just add 0 and close the interval), and, hence, you are right, it is not bounded. Note that even if you did define it piecewise to have a value at 0, then it would not be continuous, since it approaches plus infinity as x goes to zero.

One slight correction. f is defined on (0, 1] x [0, 1]. Note that 0 is included in the second interval (the domain for y).
 
Mark44 said:
One slight correction. f is defined on (0, 1] x [0, 1]. Note that 0 is included in the second interval (the domain for y).
Sorry, you are correct, of course. I am not familiar with rectangles like this or vector calculus yet, so I just answered what I thought was right for x, but completely forgot about the fact that with y there is no such problem in this specific case :smile:
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
373