Simple Convergence: Does \sum\sin(x^n) Converge?

  • Context: Graduate 
  • Thread starter Thread starter bomba923
  • Start date Start date
  • Tags Tags
    Convergence
Click For Summary
SUMMARY

The series \(\sum_{n=1}^{\infty} \sin(x^n)\) converges absolutely for all \(x\) in the interval \((-1, 1)\). This conclusion is drawn from the inequality \(|\sin(x)| < |x|\), which leads to \(|\sin(x^n)| < |x^n|\). The right-hand side forms a geometric series that converges in this interval. Additionally, the function \(f_n(x) = \frac{1}{n}\sum_{k=1}^n \sin(x^k)\) is analyzed, revealing that it has a maximum at some \(x > 1\) and that the limit of the maximum points \(x_n\) approaches 1 as \(n\) approaches infinity.

PREREQUISITES
  • Understanding of series convergence, specifically geometric series.
  • Familiarity with trigonometric functions and their properties.
  • Knowledge of calculus, particularly derivatives and critical points.
  • Experience with limits and the Squeeze Theorem.
NEXT STEPS
  • Study the properties of geometric series and their convergence criteria.
  • Learn about the behavior of trigonometric functions, particularly \(\sin(x)\) and its inequalities.
  • Explore the application of calculus in finding critical points and analyzing function behavior.
  • Investigate the Squeeze Theorem and its applications in limit evaluation.
USEFUL FOR

Mathematicians, calculus students, and anyone interested in series convergence and trigonometric function analysis will benefit from this discussion.

bomba923
Messages
759
Reaction score
0
Just out of curiosity, does
\sum\limits_{n = 1}^\infty {\sin \left( {x^n } \right)}
converge \forall x \in \left( -1 , 1 \right) ?
 
Last edited:
Physics news on Phys.org
I would be tempted to say yes, because of the inequality |sin(x)|<|x|, which implies |sin(x^n)|<|x^n|, which implies

\sum^m|\sin(x^n)|\leq \sum^m|x^n|

But for -1<x<1, the sum on the right is geometric, which converges. So the sine series converges absolutely.
 
can you please tell me how i can prove that |sin(x)| < |x|?
 
Strictly speaking, it's not true- sin(x)= x when x= 0!

At x=0 sin(0)= 0. Let f(x)= x- sin(x). Then f'(x)= 1- cos(x) which is always greater than or equal to 0. That is, x- sin(x) is an increasing function. For any x> 0 x> sin(x). For x< 0 use the fact that both x and sin(x) are odd functions: if x is negative, then -x is positive and so -x> sin(-x)= -sin(x). But x is negative and (for 0&gt; x&gt; -\pi) so is sin(x). |sin(x)|= -x> |sin(x)|= -sin(x). For |x|> 1, it is obvious that |x|> |sin(x)|.
 
quasar987 said:
I would be tempted to say yes, because of the inequality |sin(x)|<|x|, which implies |sin(x^n)|<|x^n|, which implies

\sum^m|\sin(x^n)|\leq \sum^m|x^n|

But for -1<x<1, the sum on the right is geometric, which converges. So the sine series converges absolutely.
I see, thank you :smile:

A similar question (but like the previous, related to a larger problem):
\forall n \in \mathbb{N},{\text{ does }}\exists x &gt; 1:\frac{1}<br /> {n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \leqslant \sin 1{\text{ ?}}
 
In particular, I'm looking at the function
f_n \left( x \right) = \frac{1}{n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)}

where
\forall n \geqslant 1,\; - 1 \leqslant f_n \left( x \right) \leqslant 1
and
\forall x \in \left[ 0,1 \right], \; \frac{{df_n }}{{dx}} &gt; 0

From inspection at n=2,3,..., up to n=25 (my graphing program's constraints!),
the first critical point (i.e., dfn(x)/dx=0) that fn(x) approaches (for positive x) is always a maximum at some x>1

Furthermore, if we let xn be the x-value of this maximum for fn(x)
(i.e., the smallest x>0 such that dfn(x)/dx=0), then we notice
x_2 &gt; \cdots &gt; x_n &gt; 1
--------------------------------------------------------------------------------
*But, what is
\lim \limits_{n \to \infty } x_n \; ?

Clearly, \lim \limits_{n \to \infty } x_n \ne 1, since
f&#039;_n \left( 1 \right) = \left( {\cos 1 + 2\cos 1 + 3\cos 1 + \cdots } \right)/n &gt; 0

Also, since
\frac{{df_n }}{{dx}} = \frac{1}{n}\sum\limits_{k = 1}^n {kx^{k - 1} \cos \left( {x^k } \right)}

my question is simply
{\text{What is the smallest }}x &gt; 0\;{\text{such that }}\frac{d}<br /> {{dx}}\sum\limits_{k = 1}^{\infty} {\sin \left( {x^k } \right)} = 0\;?
 
Last edited:
No replies? :redface:
bomba923 said:
A similar question (but like the previous, related to a larger problem):
\forall n \in \mathbb{N},{\text{ does }}\exists x &gt; 1:\frac{1}<br /> {n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \leqslant \sin 1{\text{ ?}}
In particular, before asking
\text{What is } \lim \limits_{n \to \infty } x_n ?

someone might ask
{\text{How do we know if }}\forall n \in \mathbb{N},\;\exists x_n &gt; 1: f_n {\kern 1pt} &#039; \left( {x_n } \right) = 0\;?

which means I must
{\text{Prove/disprove that }}\forall n \in \mathbb{N},\;\exists x_n &gt; 1:\frac{d}{{dx}}\sum\limits_{k = 1}^n {\sin \left( {x_n^k } \right)} = 0

or, equivalently (due to Mean & Intermediate Value Theorems),
{\text{Prove/disprove that }}\forall n \in \mathbb{N},\;\exists x &gt; 1: \frac{1}{n} \sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \leqslant \sin 1

(I tried induction, but showing n\ton+1 wasn't quite as easy as I hoped...)

*So, does anyone have any ideas how I may prove (or disprove :rolleyes:) that
\forall n \in \mathbb{N},\;\exists x &gt; 1: \frac{1}{n} \sum\limits_{k = 1}^n {\sin \left( x^k \right)} \leqslant \sin 1
?
 
Same as before,
\begin{gathered}<br /> f_n \left( x \right) = \frac{1}<br /> {n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \Rightarrow f&#039;_n \left( x \right) = \frac{1}<br /> {n}\sum\limits_{k = 1}^n {kx^{k - 1} \cos \left( {x^k } \right)} \hfill \\<br /> x_n = \min \left\{ {x &gt; 0:f&#039;_n \left( x \right) = 0} \right\} = \min \left\{ {x &gt; 0:\frac{d}<br /> {{dx}}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} = 0} \right\} \hfill \\ \end{gathered}

From inspection, it appears that
\frac{d}{{dx}}\sum\limits_{k = 1}^{n + 1} {\sin \left( {x_n^k } \right)} &lt; 0

though...
\begin{gathered}<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + nx_n^{n - 1} \cos x_n^n = 0 \Rightarrow \hfill \\<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + \left( {n + 1} \right)x_n^n \cos x_n^{n + 1} &lt; 0 \hfill \\ <br /> \end{gathered}

~or equivalently,
\begin{gathered}<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + nx_n^{n - 1} \cos x_n^n = 0 \Rightarrow \hfill \\<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + nx_n^{n - 1} \cos x_n^n + \left( {n + 1} \right)x_n^n \cos x_n^{n + 1} &lt; 0 \hfill \\ \end{gathered}

implies (as π/2=x1>x2>...)
\left( {n + 1} \right)x_n^n \cos x_n^{n + 1} &lt; 0 \Rightarrow \cos x_n^{n + 1} &lt; 0 \Rightarrow \sqrt[{n + 1}]{{\pi /2}} &lt; x_n &lt; \sqrt[{n + 1}]{{3\pi /2}}

which, by the Squeeze Theorem, implies
\lim \limits_{n \to \infty } \sqrt[{n + 1}]{{\pi /2}} &lt; \lim \limits_{n \to \infty } x_n &lt; \lim \limits_{n \to \infty } \sqrt[{n + 1}]{{3\pi /2}} \Rightarrow \mathop {\lim }\limits_{n \to \infty } x_n = 1

*Which is strange, considering that
\begin{gathered}<br /> \forall n \in \mathbb{N},\;f&#039;_n \left( x \right) &gt; 0\;{\text{for }}0 \leqslant x \leqslant 1,\;{\text{and}} \hfill \\<br /> \mathop {\lim }\limits_{n \to \infty } f&#039;_n \left( 1 \right) = \frac{{\cos 1 + 2\cos 1 + 3\cos 1 + \cdots + n\cos 1}}<br /> {n} = \mathop {\lim }\limits_{n \to \infty } \frac{{n + 1}}<br /> {2}\cos 1,\;{\text{which diverges}} \hfill \\ <br /> \end{gathered}
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K