I have a quick question about whether or not a matrix is invertible. The question asked is pretty simple, "Suppose that A is a square matrix such that det(A^4) = 0. Show that A cannot be invertible." I know how to explain it, but I'm not sure if it's really the "correct" way, as in I'm not missing anything or making assumptions I wouldn't be allowed to make on an exam.(adsbygoogle = window.adsbygoogle || []).push({});

So my stab at it:

det(A^4) = det(AAAA) = detA detA detA detA = 0, therefore det A = 0

If A is invertible, there exists a B such that

AB = BA = I

det(AB) = det(I)

detA detB = 1

Therefore, for the matrix to be invertible, detA must be non-zero, which it isn't

Like, that seems right to me, but I'm not sure if I have to do any additional work for the part with the inverse to show I understand it.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Simple Linear Algebra (determinant invertibility)

**Physics Forums | Science Articles, Homework Help, Discussion**