MHB Simple Question on Polynomial Rings

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Polynomial Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
When we write F[x_1, x_2, ... ... , x_n] where F is, say, a field, do we necessarily mean the set of all possible polynomials in x_1, x_2, ... ... x_n with coefficients in F? [In this case, essentially all that is required to determine whether a polynomial belongs to F[x_1, x_2, ... ... , x_n] is to check that the co-efficients belong to F and the indeterminates only contain x_1, x_2, ... ... , x_n.]

OR

when e write F[x_1, x_2, ... ... , x_n] do we mean to include possible cases such as the set of polynomials with even coefficients - that is we may be talking about the set of polynomials with even co-efficients - so we cannot be sure what ring of polynomials we are talking about when we write F[x_1, x_2, ... ... , x_n] until we specify the exact nature of ring of polynomials we are talking about further.If the latter is the case when given F[x_1, x_2, ... ... , x_n] we can not reason about whether particular polynomials belong to F[x_1, x_2, ... ... , x_n] until you know the exact nature of the ring F[x_1, x_2, ... ... , x_n]

I very much suspect that the former is the case but ... ... Can someone please confirm or clarify this?

Peter

[This is also posted on MHF]
 
Last edited:
Physics news on Phys.org
Re: Simple question on polynomial ringsWhen we write [TEX] F[x_1, x_2, ... ... , x_n] [/TEX] where F

Peter said:
When we write F[x_1, x_2, ... ... , x_n] where F is, say, a field, do we necessarily mean the set of all possible polynomials in x_1, x_2, ... ... x_n with coefficients in F? [In this case, essentially all that is required to determine whether a polynomial belongs to F[x_1, x_2, ... ... , x_n] is to check that the co-efficients belong to F and the indeterminates only contain x_1, x_2, ... ... , x_n.]

OR

when e write F[x_1, x_2, ... ... , x_n] do we mean to include possible cases such as the set of polynomials with even coefficients - that is we may be talking about the set of polynomials with even co-efficients - so we cannot be sure what ring of polynomials we are talking about when we write F[x_1, x_2, ... ... , x_n] until we specify the exact nature of ring of polynomials we are talking about further.If the latter is the case when given F[x_1, x_2, ... ... , x_n] we can not reason about whether particular polynomials belong to F[x_1, x_2, ... ... , x_n] until you know the exact nature of the ring F[x_1, x_2, ... ... , x_n]

I very much suspect that the former is the case but ... ... Can someone please confirm or clarify this?

Peter

[This is also posted on MHF]

Hey Peter!

I am pretty sure that the former is the case.

Lets take a very simple non-polynomial ring example. When we write $\mathbb R$ we mean the set of all reals, not some specific type of them, like say irrationals or something. There is no reason that mathematicians would choose to use a different and quite ambiguous convention for more complicated structures. :)
 
Re: Simple question on polynomial ringsWhen we write [TEX] F[x_1, x_2, ... ... , x_n] [/TEX] where F

caffeinemachine said:
Hey Peter!

I am pretty sure that the former is the case.

Lets take a very simple non-polynomial ring example. When we write $\mathbb R$ we mean the set of all reals, not some specific type of them, like say irrationals or something. There is no reason that mathematicians would choose to use a different and quite ambiguous convention for more complicated structures. :)

Thanks caffeinemachine,

You write "There is no reason that mathematicians would choose to use a different and quite ambiguous convention for more complicated structures."

I was more thinking that maybe F[x_1, x_2, ... ... , x_n]would stand for a set of possible structures in the same way that when we say, a ring R., it can stand for many structures ... in the same way, I was thinking that maybe F[x_1, x_2, ... ... , x_n] could stand for a number of different polynomial rings.

Mind you, I think you are correct anyway :)

Peter
 
Re: Simple question on polynomial ringsWhen we write [TEX] F[x_1, x_2, ... ... , x_n] [/TEX] where F

Peter said:
I was more thinking that maybe F[x_1, x_2, ... ... , x_n]would stand for a set of possible structures in the same way that when we say, a ring R., it can stand for many structures ... in the same way, I was thinking that maybe F[x_1, x_2, ... ... , x_n] could stand for a number of different polynomial rings.

I don't quite understand you here. Can you please elaborate?
 
Re: Simple question on polynomial ringsWhen we write [TEX] F[x_1, x_2, ... ... , x_n] [/TEX] where F

Peter said:
Thanks caffeinemachine,

You write "There is no reason that mathematicians would choose to use a different and quite ambiguous convention for more complicated structures."

I was more thinking that maybe F[x_1, x_2, ... ... , x_n]would stand for a set of possible structures in the same way that when we say, a ring R., it can stand for many structures ... in the same way, I was thinking that maybe F[x_1, x_2, ... ... , x_n] could stand for a number of different polynomial rings.

Mind you, I think you are correct anyway :)

Peter

It does stand for a number of different structures in the same way that $R$ stands for different structures but that is because the $F$ can represent different fields.

So for example the polynomial ring $\mathbb{Q}[x_1,...,x_n]$ has co-efficients from the rationals and would be analogous to the ring $\mathbb{Q}$

And $F[x_1,...,x_n]$ has co-efficients from the field $F$ whatever that may be in the same way that $R$ has elements from $R$ whatever that may be.

However once we specify this field it does not then change
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top