MHB Simplification of Trigonometric Expression

Click For Summary
The discussion focuses on simplifying the expression \( \cos[k_n(L-\varepsilon)] - \cos k_nL \) for small epsilon. Participants clarify that the initial claim of simplification to \( 2\sin k_nL \) is incorrect, and the correct approximation is \( \sim k_n \varepsilon \sin(k_n L) \). The cosine of a sum formula and Taylor expansion are suggested as methods for simplification. One participant notes that using the cosine sum leads to \( \sin k_nL \sin k_n\varepsilon \), which aligns with the approximation for small angles. The conversation emphasizes the importance of accurate trigonometric identities in simplification.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\cos[k_n(L-\varepsilon)]-\cos k_nL
$$
I just read this for small epsilon this result can be further simpli ed by using the trigonometric identity for $\cos[k_n(L-\varepsilon)]$. Doing so result is
$$
2\sin k_nL
$$
I don't see this? Can someone explain?
 
Mathematics news on Phys.org
dwsmith said:
$$
\cos[k_n(L-\varepsilon)]-\cos k_nL
$$
I just read this for small epsilon this result can be further simplied by using the trigonometric identity for $\cos[k_n(L-\varepsilon)]$. Doing so result is
$$
2\sin k_nL
$$
I don't see this? Can someone explain?

It's not true, it is \(\sim k_n \varepsilon\, \sin(k_n L)\)

CB
 
CaptainBlack said:
It's not true, it is \(\sim k_n \varepsilon\, \sin(k_n L)\)

CB

What trig identity did you use though?
 
dwsmith said:
What trig identity did you use though?

You can use the cosine of a sum formula, but you get the same result by taking a Taylor expansion of the first term.

CB
 
Last edited:
CaptainBlack said:
You can use the cosine of a sum formula, but you get the same result by taking a Mclaurin expansion of the first term.

CB

If we use cosine sum, shouldn't it be
$$
\cos k_nL\underbrace{\cos k_n\varepsilon}_{\approx 1 \text{ for small }\varepsilon} + \sin k_nL\sin k_n\varepsilon - \cos k_nL = \sin k_nL\sin k_n\varepsilon
$$
 
Recall $\displaystyle \sin\theta\approx\theta$ for small $\displaystyle \theta$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K