MHB Simplify a+b+c+d+2(ab+ac+ad+bc+bd+cd)+4(abc+abd+acd+bcd)+8(abcd)

  • Thread starter Thread starter dlecl
  • Start date Start date
  • Tags Tags
    Simplify
dlecl
Messages
1
Reaction score
0
four variables a,b,c,d
here is the equation: a+b+c+d+2(ab+ac+ad+bc+bd+cd)+4(abc+abd+acd+bcd)+8(abcd)
wondering if this can be simplified to something much smaller
 
Mathematics news on Phys.org
dlecl said:
four variables a,b,c,d
here is the equation: a+b+c+d+2(ab+ac+ad+bc+bd+cd)+4(abc+abd+acd+bcd)+8(abcd)
wondering if this can be simplified to something much smaller

The answer to your question is not really because there is not a common factor in the polynomial.
 
Hey, it's not an equation it's an expression!

Here's what an online CAS thinks.
 
dlecl said:
four variables a,b,c,d
here is the equation: a+b+c+d+2(ab+ac+ad+bc+bd+cd)+4(abc+abd+acd+bcd)+8(abcd)
wondering if this can be simplified to something much smaller
You could write it as $\frac12(2a+1)(2b+1)(2c+1)(2d+1) - \frac12$, if that helps.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top