Simplify a trigonometric expression

Click For Summary

Discussion Overview

The discussion revolves around simplifying a trigonometric expression involving secant and tangent functions. Participants share their approaches and solutions to the problem, which has undergone a correction in its statement.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant initially presents the expression to simplify: $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{2\pi}{5}\right)\tan \dfrac{2\pi}{15}$.
  • Another participant notes a technical issue with the original post, suggesting that a solution may not have been submitted due to this problem.
  • A correction is made to the problem statement, changing it to: $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{\pi}{30}\right)\tan \dfrac{2\pi}{15}$.
  • Multiple participants provide their solutions, indicating different methods or approaches to the simplification.
  • One participant expresses appreciation for the diversity of solutions presented, highlighting a different approach from their own.

Areas of Agreement / Disagreement

There is no consensus on a single solution or method, as multiple participants have provided different approaches to the problem. The discussion remains open with various solutions being explored.

Contextual Notes

The discussion includes a correction to the original problem statement, which may affect the solutions provided. There are also indications of technical issues that may have impacted the submission of solutions.

Who May Find This Useful

Participants interested in trigonometric simplifications, mathematical problem-solving techniques, or those looking for diverse approaches to similar problems may find this discussion useful.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{2\pi}{5}\right)\tan \dfrac{2\pi}{15}$.
 
Mathematics news on Phys.org
Here is my work

$ \left( \sqrt{3} \sec \frac{\pi}{5} + \tan \frac{2\pi}{5}\right) \tan \frac{2\pi}{15}$
 
Last edited by a moderator:
Amer said:
Here is my work

$ \left( \sqrt{3} \sec \frac{\pi}{5} + \tan \frac{2\pi}{5}\right) \tan \frac{2\pi}{15}$

Hi Amer,

I suspect you might not aware that you have not posted your solution due to some unforeseen technical problem, is that true?
 
I want to apologize for the careless typo in the original problem statement. I wish I would have noticed it much earlier...

The problem should read:

Simplify $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{\pi}{30}\right)\tan \dfrac{2\pi}{15}$.
 
My solution:

The problem can also be interepreted as to simplify

$\begin{align*}(\sqrt{3}\sec 36^{\circ}+\tan6^{\circ})\tan 24^{\circ}&=(\dfrac{\sqrt{3}}{\cos 36^{\circ}}+\tan6^{\circ})\tan 24^{\circ}\\&=\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}+\tan6^{\circ}\tan 24^{\circ}\end{align*}$

It's really hard to "predict" what would be the next best step to simplify the given expression, but my plan of attack is to find an expression that relates between $\tan 24^{\circ}$ and $\cos 36^{\circ}$.

From the identity [TABLE="class: grid, width: 800"]
[TR]
[TD]$\tan (90^{\circ}-y)=\dfrac{1}{\tan y}$[/TD]
[TD]and[/TD]
[TD]$\tan x \tan (60^{\circ}-x) \tan (60^{\circ}-x)=\tan 3x$, we see that if we set $x=24^{\circ}$, we have[/TD]
[/TR]
[/TABLE]


$\tan 24^{\circ} \tan 36^{\circ} \tan 84^{\circ}=\tan 72^{\circ}$

$\tan 24^{\circ} \tan 36^{\circ} \dfrac{1}{\tan 6^{\circ}}=\dfrac{1}{\tan 18^{\circ}}$

$\tan 24^{\circ} \tan 36^{\circ} \tan 18^{\circ}=\tan 6^{\circ}$

$\tan 24^{\circ} \dfrac{\sin 36^{\circ}}{\cos 36^{\circ}} \dfrac{\sin 18^{\circ}}{\cos 18^{\circ}}=\tan 6^{\circ}$

$\tan 24^{\circ} \dfrac{2\sin 18^{\circ}\cancel{\cos 18^{\circ}}}{\cos 36^{\circ}} \dfrac{\sin 18^{\circ}}{\cancel{\cos 18^{\circ}}}=\tan 6^{\circ}$

$\tan 24^{\circ}(2\sin^2 18^{\circ})=\tan 6^{\circ}\cos 36^{\circ}$

$\tan 24^{\circ}(1-\cos 36^{\circ})=\tan 6^{\circ}\cos 36^{\circ}$

$\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}=1-(\tan 6^{\circ}\tan 24^{\circ})$

$\begin{align*}\therefore (\sqrt{3}\sec 36^{\circ}+\tan6^{\circ})\tan 24^{\circ}&=\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}+\tan6^{\circ}\tan 24^{\circ}\\&=1-(\tan 6^{\circ}\tan 24^{\circ})+\tan6^{\circ}\tan 24^{\circ}\\&=1\end{align*}$
 
My solution
Let $\displaystyle x = \frac{\pi}{30}$

The expression with the assumption above

$ \left( \sqrt{3} \sec 6x + \tan x \right) \tan 4x $

$\displaystyle \frac{\sqrt{3} \cos(x) \sin(4x) + \sin(x) \sin(4x) \cos(6x)}{\cos (6x) \cos(4x) \cos(x)}$

$\displaystyle \frac{ \sqrt{3}/2 ( \sin (5x) + \sin (3x) ) + 0.5 \cos(6x) ( \cos(3x) - \cos(5x) ) }{\cos (6x) \cos(4x) \cos(x)}$

Since $5x = \frac{\pi}{6}$

$\displaystyle \frac{\sqrt{3}/2 ( 1/2 + \sin (3x) ) +0.5 \cos(6x) ( \cos(3x) - \sqrt{3}/2) }{\cos (6x) \cos(4x) \cos(x)} $

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x) + \cos(6x) (2\cos(3x) - \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))}$

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x) + \cos(6x) (2\cos(3x) + \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))} = \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x)}{\cos(6x) (\sqrt{3} + 2\cos(3x))} +1 = 1 $

Since
$\displaystyle 1 + 2 \sin(3x) - 2 \cos (6x) = 1 + \frac{2}{4} ( \sqrt{5} -1) - \frac{2}{4} ( 1 + \sqrt{5}) = 0 $
 
Amer said:
My solution
Let $\displaystyle x = \frac{\pi}{30}$

The expression with the assumption above

$ \left( \sqrt{3} \sec 6x + \tan x \right) \tan 4x $

$\displaystyle \frac{\sqrt{3} \cos(x) \sin(4x) + \sin(x) \sin(4x) \cos(6x)}{\cos (6x) \cos(4x) \cos(x)}$

$\displaystyle \frac{ \sqrt{3}/2 ( \sin (5x) + \sin (3x) ) + 0.5 \cos(6x) ( \cos(3x) - \cos(5x) ) }{\cos (6x) \cos(4x) \cos(x)}$

Since $5x = \frac{\pi}{6}$

$\displaystyle \frac{\sqrt{3}/2 ( 1/2 + \sin (3x) ) +0.5 \cos(6x) ( \cos(3x) - \sqrt{3}/2) }{\cos (6x) \cos(4x) \cos(x)} $

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x) + \cos(6x) (2\cos(3x) - \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))}$

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x) + \cos(6x) (2\cos(3x) + \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))} = \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x)}{\cos(6x) (\sqrt{3} + 2\cos(3x))} +1 = 1 $

Since
$\displaystyle 1 + 2 \sin(3x) - 2 \cos (6x) = 1 + \frac{2}{4} ( \sqrt{5} -1) - \frac{2}{4} ( 1 + \sqrt{5}) = 0 $

Thanks Amer for participating and I am glad to receive another solution that works differently than mine.:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K