Simplify a trigonometric expression

Click For Summary
SUMMARY

The discussion focuses on simplifying the trigonometric expression $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{\pi}{30}\right)\tan \dfrac{2\pi}{15}$. Participants clarify a typo in the original problem statement, ensuring the correct expression is analyzed. Multiple solutions are shared, highlighting different approaches to the simplification process. The engagement showcases collaborative problem-solving in trigonometry.

PREREQUISITES
  • Understanding of trigonometric functions such as secant and tangent
  • Familiarity with angle measures in radians
  • Knowledge of trigonometric identities and simplification techniques
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study trigonometric identities for simplification techniques
  • Learn about the properties of secant and tangent functions
  • Explore angle addition and subtraction formulas in trigonometry
  • Practice simplifying complex trigonometric expressions
USEFUL FOR

Students, educators, and mathematics enthusiasts looking to enhance their understanding of trigonometric simplifications and identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{2\pi}{5}\right)\tan \dfrac{2\pi}{15}$.
 
Mathematics news on Phys.org
Here is my work

$ \left( \sqrt{3} \sec \frac{\pi}{5} + \tan \frac{2\pi}{5}\right) \tan \frac{2\pi}{15}$
 
Last edited by a moderator:
Amer said:
Here is my work

$ \left( \sqrt{3} \sec \frac{\pi}{5} + \tan \frac{2\pi}{5}\right) \tan \frac{2\pi}{15}$

Hi Amer,

I suspect you might not aware that you have not posted your solution due to some unforeseen technical problem, is that true?
 
I want to apologize for the careless typo in the original problem statement. I wish I would have noticed it much earlier...

The problem should read:

Simplify $\left(\sqrt{3}\sec \dfrac{\pi}{5}+\tan\dfrac{\pi}{30}\right)\tan \dfrac{2\pi}{15}$.
 
My solution:

The problem can also be interepreted as to simplify

$\begin{align*}(\sqrt{3}\sec 36^{\circ}+\tan6^{\circ})\tan 24^{\circ}&=(\dfrac{\sqrt{3}}{\cos 36^{\circ}}+\tan6^{\circ})\tan 24^{\circ}\\&=\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}+\tan6^{\circ}\tan 24^{\circ}\end{align*}$

It's really hard to "predict" what would be the next best step to simplify the given expression, but my plan of attack is to find an expression that relates between $\tan 24^{\circ}$ and $\cos 36^{\circ}$.

From the identity [TABLE="class: grid, width: 800"]
[TR]
[TD]$\tan (90^{\circ}-y)=\dfrac{1}{\tan y}$[/TD]
[TD]and[/TD]
[TD]$\tan x \tan (60^{\circ}-x) \tan (60^{\circ}-x)=\tan 3x$, we see that if we set $x=24^{\circ}$, we have[/TD]
[/TR]
[/TABLE]


$\tan 24^{\circ} \tan 36^{\circ} \tan 84^{\circ}=\tan 72^{\circ}$

$\tan 24^{\circ} \tan 36^{\circ} \dfrac{1}{\tan 6^{\circ}}=\dfrac{1}{\tan 18^{\circ}}$

$\tan 24^{\circ} \tan 36^{\circ} \tan 18^{\circ}=\tan 6^{\circ}$

$\tan 24^{\circ} \dfrac{\sin 36^{\circ}}{\cos 36^{\circ}} \dfrac{\sin 18^{\circ}}{\cos 18^{\circ}}=\tan 6^{\circ}$

$\tan 24^{\circ} \dfrac{2\sin 18^{\circ}\cancel{\cos 18^{\circ}}}{\cos 36^{\circ}} \dfrac{\sin 18^{\circ}}{\cancel{\cos 18^{\circ}}}=\tan 6^{\circ}$

$\tan 24^{\circ}(2\sin^2 18^{\circ})=\tan 6^{\circ}\cos 36^{\circ}$

$\tan 24^{\circ}(1-\cos 36^{\circ})=\tan 6^{\circ}\cos 36^{\circ}$

$\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}=1-(\tan 6^{\circ}\tan 24^{\circ})$

$\begin{align*}\therefore (\sqrt{3}\sec 36^{\circ}+\tan6^{\circ})\tan 24^{\circ}&=\dfrac{\sqrt{3}\tan 24^{\circ}}{\cos 36^{\circ}}+\tan6^{\circ}\tan 24^{\circ}\\&=1-(\tan 6^{\circ}\tan 24^{\circ})+\tan6^{\circ}\tan 24^{\circ}\\&=1\end{align*}$
 
My solution
Let $\displaystyle x = \frac{\pi}{30}$

The expression with the assumption above

$ \left( \sqrt{3} \sec 6x + \tan x \right) \tan 4x $

$\displaystyle \frac{\sqrt{3} \cos(x) \sin(4x) + \sin(x) \sin(4x) \cos(6x)}{\cos (6x) \cos(4x) \cos(x)}$

$\displaystyle \frac{ \sqrt{3}/2 ( \sin (5x) + \sin (3x) ) + 0.5 \cos(6x) ( \cos(3x) - \cos(5x) ) }{\cos (6x) \cos(4x) \cos(x)}$

Since $5x = \frac{\pi}{6}$

$\displaystyle \frac{\sqrt{3}/2 ( 1/2 + \sin (3x) ) +0.5 \cos(6x) ( \cos(3x) - \sqrt{3}/2) }{\cos (6x) \cos(4x) \cos(x)} $

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x) + \cos(6x) (2\cos(3x) - \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))}$

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x) + \cos(6x) (2\cos(3x) + \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))} = \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x)}{\cos(6x) (\sqrt{3} + 2\cos(3x))} +1 = 1 $

Since
$\displaystyle 1 + 2 \sin(3x) - 2 \cos (6x) = 1 + \frac{2}{4} ( \sqrt{5} -1) - \frac{2}{4} ( 1 + \sqrt{5}) = 0 $
 
Amer said:
My solution
Let $\displaystyle x = \frac{\pi}{30}$

The expression with the assumption above

$ \left( \sqrt{3} \sec 6x + \tan x \right) \tan 4x $

$\displaystyle \frac{\sqrt{3} \cos(x) \sin(4x) + \sin(x) \sin(4x) \cos(6x)}{\cos (6x) \cos(4x) \cos(x)}$

$\displaystyle \frac{ \sqrt{3}/2 ( \sin (5x) + \sin (3x) ) + 0.5 \cos(6x) ( \cos(3x) - \cos(5x) ) }{\cos (6x) \cos(4x) \cos(x)}$

Since $5x = \frac{\pi}{6}$

$\displaystyle \frac{\sqrt{3}/2 ( 1/2 + \sin (3x) ) +0.5 \cos(6x) ( \cos(3x) - \sqrt{3}/2) }{\cos (6x) \cos(4x) \cos(x)} $

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x) + \cos(6x) (2\cos(3x) - \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))}$

$\displaystyle \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x) + \cos(6x) (2\cos(3x) + \sqrt{3} )}{\cos(6x) (\sqrt{3} + 2\cos(3x))} = \frac{\sqrt{3} + 2\sqrt{3} \sin(3x)- 2\sqrt{3}\cos(6x)}{\cos(6x) (\sqrt{3} + 2\cos(3x))} +1 = 1 $

Since
$\displaystyle 1 + 2 \sin(3x) - 2 \cos (6x) = 1 + \frac{2}{4} ( \sqrt{5} -1) - \frac{2}{4} ( 1 + \sqrt{5}) = 0 $

Thanks Amer for participating and I am glad to receive another solution that works differently than mine.:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K