Simplifying a Quotient with Real Number $a>1$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    quotient Simplifying
Click For Summary

Discussion Overview

The discussion centers around simplifying the quotient of two infinite series involving the Riemann Zeta function, specifically for real numbers \( a > 1 \). Participants explore both algebraic and analytical approaches to the problem, touching on concepts from complex analysis.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants propose that the series in the numerator can be expressed as \( \zeta(a) \), while the series in the denominator can be expressed as \( \zeta(a)(1 - 2^{1-a}) \).
  • Others express uncertainty about the meaning of \( \zeta(a) \) and prefer an algebraic approach to the problem.
  • One participant elaborates on the definition of the Riemann Zeta function and its convergence properties, indicating its relevance to the discussion.
  • Another participant acknowledges the complexity of the Riemann Hypothesis and expresses a desire to understand it better, despite feeling their knowledge is limited.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best approach to simplify the quotient. There are competing views regarding the use of the Riemann Zeta function versus an algebraic method, and the discussion remains unresolved.

Contextual Notes

Some participants express confusion regarding the definitions and implications of the Riemann Zeta function, indicating a potential limitation in understanding the problem fully. The discussion also highlights the complexity of extending the properties of the Zeta function to different domains.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $$\frac{\Large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}$$ where $a>1$ is a real number.
 
Physics news on Phys.org
Re: Simplying a quotient

anemone said:
Simplify $$\frac{\Large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}$$ where $a>1$ is a real number.

Is...

$\displaystyle 1 + \frac{1}{2^{a}} + \frac{1}{3^{a}} + \frac{1}{4^{a}} + ... = \zeta(a)\ (1)$

... and...

$\displaystyle 1 - \frac{1}{2^{a}} + \frac{1}{3^{a}} - \frac{1}{4^{a}} + ... = \zeta (a) - 2^{1-a}\ \zeta(a) = \zeta(a)\ (1 - 2^{1-a})\ (2)$

... so that...

Kind regards

$\chi$ $\sigma$
 
Re: Simplying a quotient

chisigma said:
Is...

$\displaystyle 1 + \frac{1}{2^{a}} + \frac{1}{3^{a}} + \frac{1}{4^{a}} + ... = \zeta(a)\ (1)$

... and...

$\displaystyle 1 - \frac{1}{2^{a}} + \frac{1}{3^{a}} - \frac{1}{4^{a}} + ... = \zeta (a) - 2^{1-a}\ \zeta(a) = \zeta(a)\ (1 - 2^{1-a})\ (2)$

... so that...

Kind regards

$\chi$ $\sigma$

Hi chisigma,

Thanks for participating! I can tell that this problem seems like an easy one and probably doesn't count as a challenging problem to you and perhaps some other folks on the forum. :(

I will admit that I don't know what you mean by $\zeta(a)$. I solved the problem purely using an algebraic approach and here is my solution:
$$\frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}=\frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{3^a}+\frac{1}{5^a}+\cdots \right)-\left( \frac{1}{2^a}+\frac{1}{4^a}+\frac{1}{6^a}+\cdots \right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)-2\left( \frac{1}{2^a}+\frac{1}{4^a}+\frac{1}{6^a}+\cdots \right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)-\frac{2}{2^a}\left( 1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{\large1-\frac{2}{2^a}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{2^a}{2^a-2}$$
 
Re: Simplying a quotient

anemone said:
Hi chisigma,

Thanks for participating! I can tell that this problem seems like an easy one and probably doesn't count as a challenging problem to you and perhaps some other folks on the forum. :(

I will admit that I don't know what you mean by $\zeta(a)$...

Hi anemone

Your post is very interesting because illustrates a very important question in the field of complex function. The so called 'Riemann Zeta Function' for $\displaystyle \text{Re}\ (s) > 1$ is defined as...

$\displaystyle \zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}}\ (1)$

A genial intuition of the Swiss mathematician Leonhard Euler was the fact that $\zeta(s)$ exists for every complex s with the only exception of s=1. Now the series in (1) diverges for $\displaystyle \text{Re}\ (s) \le 1$ and at first we don't see a way to write an explicit expression for $\zeta (s)$ in the left portion of the complex plane. A symple way however is to write the (1) as...

$\displaystyle \zeta(s) = 1 - \frac{1}{2^{s}} + \frac{1}{3^{s}} - \frac{1}{4^{s}} + ... +\ 2\ (\frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{6^{s}} +...) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} + 2^{1 - s}\ \zeta (s)\ (2)$

... and from (2)...

$\displaystyle \zeta(s) = \frac{1}{1 - 2^{1-s}}\ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}\ (3)$

The series in (3) converges for $\displaystyle \text{Re}\ (s) > 0$, so that the range of the $\zeta (s)$ has been extended. The German mathematician Bernard Riemann supposed that all the complex zeroes of $\zeta(s)$ lie on the line $\text{Re}\ (s) = \frac{1}{2}$ and the (3) permits to verify that. If Belle demonstrates that the Riemann's hypothesis is true, there is a rich premium of a million of dollars for Her! ;)...

Kind regards

$\chi$ $\sigma$
 
Hi chisigma,

That is so nice of you to teach me the fundamentals of the zeta function and I really appreciate that and find that it is another very beautiful branch of mathematics which interests me and I hope to discover a beautiful way to prove that hypothesis to be true, even though my knowledge of mathematics is very limited as compared to ALL members of MHB. I am only joking, chisigma...:o How could I prove this elegant and lofty hypothesis to be true, based on my shallow knowledge?

But, I am very happy that you have taught me more about the zeta function, my friend!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K