MHB Simplifying a Quotient with Real Number $a>1$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $$\frac{\Large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}$$ where $a>1$ is a real number.
 
Mathematics news on Phys.org
Re: Simplying a quotient

anemone said:
Simplify $$\frac{\Large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}$$ where $a>1$ is a real number.

Is...

$\displaystyle 1 + \frac{1}{2^{a}} + \frac{1}{3^{a}} + \frac{1}{4^{a}} + ... = \zeta(a)\ (1)$

... and...

$\displaystyle 1 - \frac{1}{2^{a}} + \frac{1}{3^{a}} - \frac{1}{4^{a}} + ... = \zeta (a) - 2^{1-a}\ \zeta(a) = \zeta(a)\ (1 - 2^{1-a})\ (2)$

... so that...

Kind regards

$\chi$ $\sigma$
 
Re: Simplying a quotient

chisigma said:
Is...

$\displaystyle 1 + \frac{1}{2^{a}} + \frac{1}{3^{a}} + \frac{1}{4^{a}} + ... = \zeta(a)\ (1)$

... and...

$\displaystyle 1 - \frac{1}{2^{a}} + \frac{1}{3^{a}} - \frac{1}{4^{a}} + ... = \zeta (a) - 2^{1-a}\ \zeta(a) = \zeta(a)\ (1 - 2^{1-a})\ (2)$

... so that...

Kind regards

$\chi$ $\sigma$

Hi chisigma,

Thanks for participating! I can tell that this problem seems like an easy one and probably doesn't count as a challenging problem to you and perhaps some other folks on the forum. :(

I will admit that I don't know what you mean by $\zeta(a)$. I solved the problem purely using an algebraic approach and here is my solution:
$$\frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\Large1-\frac{1}{2^a}+\frac{1}{3^a}-\frac{1}{4^a}+\cdots}=\frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{3^a}+\frac{1}{5^a}+\cdots \right)-\left( \frac{1}{2^a}+\frac{1}{4^a}+\frac{1}{6^a}+\cdots \right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)-2\left( \frac{1}{2^a}+\frac{1}{4^a}+\frac{1}{6^a}+\cdots \right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{\large 1+\frac{1}{2^a}+\frac{1}{3^a}+\frac{1}{4^a}+\cdots}{\large\left(1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)-\frac{2}{2^a}\left( 1+\frac{1}{2^a}+\frac{1}{3^a}+\cdots \right)}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{\large1-\frac{2}{2^a}}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{2^a}{2^a-2}$$
 
Re: Simplying a quotient

anemone said:
Hi chisigma,

Thanks for participating! I can tell that this problem seems like an easy one and probably doesn't count as a challenging problem to you and perhaps some other folks on the forum. :(

I will admit that I don't know what you mean by $\zeta(a)$...

Hi anemone

Your post is very interesting because illustrates a very important question in the field of complex function. The so called 'Riemann Zeta Function' for $\displaystyle \text{Re}\ (s) > 1$ is defined as...

$\displaystyle \zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}}\ (1)$

A genial intuition of the Swiss mathematician Leonhard Euler was the fact that $\zeta(s)$ exists for every complex s with the only exception of s=1. Now the series in (1) diverges for $\displaystyle \text{Re}\ (s) \le 1$ and at first we don't see a way to write an explicit expression for $\zeta (s)$ in the left portion of the complex plane. A symple way however is to write the (1) as...

$\displaystyle \zeta(s) = 1 - \frac{1}{2^{s}} + \frac{1}{3^{s}} - \frac{1}{4^{s}} + ... +\ 2\ (\frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{6^{s}} +...) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} + 2^{1 - s}\ \zeta (s)\ (2)$

... and from (2)...

$\displaystyle \zeta(s) = \frac{1}{1 - 2^{1-s}}\ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}\ (3)$

The series in (3) converges for $\displaystyle \text{Re}\ (s) > 0$, so that the range of the $\zeta (s)$ has been extended. The German mathematician Bernard Riemann supposed that all the complex zeroes of $\zeta(s)$ lie on the line $\text{Re}\ (s) = \frac{1}{2}$ and the (3) permits to verify that. If Belle demonstrates that the Riemann's hypothesis is true, there is a rich premium of a million of dollars for Her! ;)...

Kind regards

$\chi$ $\sigma$
 
Hi chisigma,

That is so nice of you to teach me the fundamentals of the zeta function and I really appreciate that and find that it is another very beautiful branch of mathematics which interests me and I hope to discover a beautiful way to prove that hypothesis to be true, even though my knowledge of mathematics is very limited as compared to ALL members of MHB. I am only joking, chisigma...:o How could I prove this elegant and lofty hypothesis to be true, based on my shallow knowledge?

But, I am very happy that you have taught me more about the zeta function, my friend!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
142
Views
9K
Replies
41
Views
5K
Replies
4
Views
985
Replies
5
Views
2K
Back
Top