MHB Simplifying the Summation Identity Using Complex Numbers

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi,

I have been trying to solve this difficult problem for some time and I thought of at least two ways to prove it but to no avail...the second method that I thought of was to employ binomial expansion on the denominator and that did lead me to the result where it only has x terms in my final proof, but it did not lead to the desired result (and I should be able to tell beforehand that I wouldn't get anywhere near to the desired form of the result by expanding the expression on the denominator too)...I am really at my wit's end and really very mad:mad: at myself now and I'd be grateful if someone could throw some light on to the problem...thanks in advance.:)Let $$-1<x<1$$, show that $$\sum_{k=0}^{6} {\frac{1-x^2}{1-2x\cos (\frac{2\pi k}{7})+x^2}}=\frac{7\left(1+x^7 \right)}{1-x^7}$$.
 
Mathematics news on Phys.org
anemone said:
Let $$-1<x<1$$, show that $$\sum_{k=0}^{6} {\frac{1-x^2}{1-2x\cos (\frac{2\pi k}{7})+x^2}}=\frac{7\left(1+x^7 \right)}{1-x^7}$$.
This problem cries out for the use of complex numbers. I'll prove a slightly more general result.Let $\omega = e^{2\pi i/n}$, with complex conjugate $\overline{\omega} = \omega^{-1}$. The $n$th roots of unity are $\omega^k\ (0\leqslant k\leqslant n-1)$, and $\displaystyle 1-x^n = \prod_{k=0}^{n-1}(1-\omega^k x)$. It follows that there must be a partial-fraction decomposition of the form $$\frac n{1-x^n} = \sum_{k=0}^{n-1}\,\frac{s_k}{1-\omega^k x}.$$ To find the coefficients $s_j$, multiply both sides by $1-\omega^jx$ to get $$\frac {n(1-\omega^jx)}{1-x^n} = s_j + (1-\omega^jx)f(x)$$ for some function $f(x)$ that is continuous at $\omega^{-j}.$ Then $$s_j = \lim_{x\to\omega^{-j}}(s_j + (1-\omega^jx)f(x)) = \lim_{x\to\omega^{-j}}\frac {n(1-\omega^jx)}{1-x^n} = \lim_{x\to\omega^{-j}}\frac {-n\omega^j}{-nx^{n-1}} = 1,$$ (using l'Hôpital's rule to evaluate the limit). Therefore $$\frac n{1-x^n} = \sum_{k=0}^{n-1}\,\frac1{1-\omega^k x}.$$ Multiply that by 2, and use the facts that $\overline{\omega}^k = \omega^{n-k}$ and $\omega^k + \overline{\omega}^k = 2\cos\bigl(\frac{2k\pi}n\bigr)$, to get $$\frac {2n}{1-x^n} = \sum_{k=0}^{n-1}\,\biggl(\frac1{1-\omega^k x} + \frac1{1-\overline{\omega}^k x}\biggr) = \sum_{k=0}^{n-1}\,\frac{2-2x\cos\bigl(\frac{2k\pi}n\bigr)}{1-2x\cos\bigl(\frac{2k\pi}n\bigr) + x^2}.$$ Finally, subtract $n$ from both sides to get $$\frac{n(1+x^n)}{1-x^n} = \frac {2n}{1-x^n} - n = \sum_{k=0}^{n-1}\,\biggl(\frac{2-2x\cos\bigl(\frac{2k\pi}n\bigr)}{1-2x\cos\bigl(\frac{2k\pi}n\bigr) + x^2} - 1\biggr) = \sum_{k=0}^{n-1}\,\frac{1-x^2}{1-2x\cos\bigl(\frac{2k\pi}n\bigr) + x^2}.$$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top