MHB Simultaneous Equations Challenge

Click For Summary
The discussion centers around solving a system of simultaneous equations involving variables a, b, and c. The first equation indicates that c must be non-negative, while the second equation requires a to be positive, further tightening the condition on c to be strictly positive. The third equation, when combined with the previous conditions, necessitates that b is also positive. Participants share their solutions, with one member complimenting another for providing a more concise answer. The challenge highlights the interdependencies of the variables in the equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the following system in real numbers:

$$a^2+b^2=2c$$

$$1+a^2=2ac$$

$$c^2=ab$$
 
Mathematics news on Phys.org
anemone said:
Solve the following system in real numbers:

$$a^2+b^2=2c$$

$$1+a^2=2ac$$

$$c^2=ab$$

I find it fascinating that the first equation requires $c\ge 0$. Then the second equation in conjunction with the first requires $a>0$, and incidentally tightens the $c$ inequality to $c>0$. Then the third equation, in conjunction with $c>0$ and $a>0$ requires $b>0$. Dominos!
 
My solution
a = b = c = 1.

I have a proof that this is the only solution but I'm looking for something a little more elegant.

If we add the first two equations and then 2 times the third we end up with

$(a-b)^2+(a-c)^2+(c-1)^2 = 0$

then $a = b = c$ and $c = 1$ giving our result.
 
Last edited:
Jester said:
My solution
a = b = c = 1.

I have a proof that this is the only solution but I'm looking for something a little more elegant.

If we add the first two equations and then 2 times the third we end up with

$(a-b)^2+(a-c)^2+(c-1)^2 = 0$

then $a = b = c$ and $c = 1$ giving our result.

Thank you Jester for participating and your solution is so much neater and shorter than mine! Well done!:)

My solution:
From $$a^2+b^2=2c$$ and $$c^2=ab$$, we have

$$a^2+\frac{c^4}{a^2}=2c\;\rightarrow\;\;a^4-2a^2c+c^4=0$$(*)

And from $$a^2+1=2ac$$ we square both sides and get

$$a^4+2a^2+1-4a^2c^2=0$$(**)

Now, subtracting the equation (*) from (**) gives

$$2a^2+1-2a^2c-c^4=0$$

$$2a^2(1-c)+(1-c^4)=0$$

$$2a^2(1-c)+(1-c)(1+c+c^2+c^3)=0$$

$$(1-c)(2a^2+1+c+c^2+c^3)=0$$

Since a, b, and c >0, $$2a^2+1+c+c^2+c^3 \ne 0$$ and thus it must be $$1-c=0\;\rightarrow\;\;c=1$$.

Back substituting $$c=1$$ to the equation $$a^4-2a^2c+c^4=0$$ and gives

$$a^4-2a^2+1=0$$

$$a^2-1=0$$

$$a^2=\pm1$$ Since $$a>0$$, we conclude that $$a=1$$.

And from $$c=ab$$, we have

$$1=1(b)\;\rightarrow b=1$$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 66 ·
3
Replies
66
Views
7K
  • · Replies 70 ·
3
Replies
70
Views
6K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
901
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K