MHB Sin Values of 87 and 89 Degrees

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Degrees Sin
AI Thread Summary
The value of the product $\sin(1^\circ) \cdot \sin(3^\circ) \cdot \sin(5^\circ) \cdots \sin(87^\circ) \cdot \sin(89^\circ)$ is approximately \(4.0194366942304562 \times 10^{-14}\). Attempts to solve this algebraically have been unsuccessful, with some participants exploring complex numbers and nth roots of unity for potential solutions. A reference method involving cosine functions has been suggested to approach the problem. The discussion highlights the challenge of finding a straightforward algebraic solution. Overall, the focus remains on determining the value of the sine product.
juantheron
Messages
243
Reaction score
1
The value of $\sin (1^0).\sin (3^0).\sin (5^0)...\sin (87^0).\sin (89^0)$

where all angles are in degree
 
Mathematics news on Phys.org
jacks said:
The value of $\sin (1^0).\sin (3^0).\sin (5^0)...\sin (87^0).\sin (89^0)$

where all angles are in degree

Hi jacks,

I haven't found a way solve this algebraically. But if you are interested about the answer it is, \(4.0194366942304562\times 10^{-14}\)
 
Sudharaka said:
Hi jacks,

I haven't found a way solve this algebraically. But if you are interested about the answer it is, \(4.0194366942304562\times 10^{-14}\)

Thanks Sudhakara

I am trying to find it with the help of complex no.(like nth -roots of unity)
 
jacks said:
The value of $\sin (1^0).\sin (3^0).\sin (5^0)...\sin (87^0).\sin (89^0)$

where all angles are in degree
Follow the method used in http://www.mathhelpboards.com/showthread.php?253-Simplify-cos(a)cos(2a)cos(3a)-cos(999a)-if-a-(2pi)-1999&p=1517&viewfull=1#post1517, noting that $x=\pm1^\circ,\pm3^\circ,\pm5^\circ,\ldots,\pm89 ^\circ$ are the solutions of the equation $\cos(90x) = 0.$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top