MHB Sin Values of 87 and 89 Degrees

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Degrees Sin
Click For Summary
The value of the product $\sin(1^\circ) \cdot \sin(3^\circ) \cdot \sin(5^\circ) \cdots \sin(87^\circ) \cdot \sin(89^\circ)$ is approximately \(4.0194366942304562 \times 10^{-14}\). Attempts to solve this algebraically have been unsuccessful, with some participants exploring complex numbers and nth roots of unity for potential solutions. A reference method involving cosine functions has been suggested to approach the problem. The discussion highlights the challenge of finding a straightforward algebraic solution. Overall, the focus remains on determining the value of the sine product.
juantheron
Messages
243
Reaction score
1
The value of $\sin (1^0).\sin (3^0).\sin (5^0)...\sin (87^0).\sin (89^0)$

where all angles are in degree
 
Mathematics news on Phys.org
jacks said:
The value of $\sin (1^0).\sin (3^0).\sin (5^0)...\sin (87^0).\sin (89^0)$

where all angles are in degree

Hi jacks,

I haven't found a way solve this algebraically. But if you are interested about the answer it is, \(4.0194366942304562\times 10^{-14}\)
 
Sudharaka said:
Hi jacks,

I haven't found a way solve this algebraically. But if you are interested about the answer it is, \(4.0194366942304562\times 10^{-14}\)

Thanks Sudhakara

I am trying to find it with the help of complex no.(like nth -roots of unity)
 
jacks said:
The value of $\sin (1^0).\sin (3^0).\sin (5^0)...\sin (87^0).\sin (89^0)$

where all angles are in degree
Follow the method used in http://www.mathhelpboards.com/showthread.php?253-Simplify-cos(a)cos(2a)cos(3a)-cos(999a)-if-a-(2pi)-1999&p=1517&viewfull=1#post1517, noting that $x=\pm1^\circ,\pm3^\circ,\pm5^\circ,\ldots,\pm89 ^\circ$ are the solutions of the equation $\cos(90x) = 0.$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K