DreamWeaver
- 297
- 0
The aims of this tutorial are threefold:
(1) By assuming two values of the Cosine function - which will be proven later on - we develop a large number of multiply-nested radicals to express $$\cos(\pi/2^kn),\, \sin(\pi/2^kn), \,$$ and $$\tan(\pi/2^kn) $$ in closed form, for ever smaller arguments $$(k, n \in \mathbb{Z}^{+})$$.
(2) By considering the limiting values of $$\cos(\pi/2^kn),\, \sin(\pi/2^kn), \,$$ and $$\tan(\pi/2^kn) $$ as $$k\to \infty$$, we evaluate a number of infinitely-nested radicals, such as:$$\sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \cdots \, } } } } } } = 2$$(3) Finally, we consider three new (?) trigonometric functions, which I will henceforth refer to as the Fractional Sine, Cosine, and Tangent functions respectively:$$\mathscr{Fs}(\theta) = \sum_{k=0}^{\infty} \sin\left( \frac{\theta}{2^k} \right)$$$$\mathscr{Fc}(\theta) = \sum_{k=0}^{\infty} (-1)^k\cos\left( \frac{\theta}{2^k} \right)$$$$\mathscr{Ft}(\theta) = \sum_{k=0}^{\infty} \tan\left( \frac{\theta}{2^k} \right)$$Naturally, some restrictions will need to be applied to $$\theta$$ in each case, to ensure convergence. Also, note that the Fractional Cosine function is an alternating series; this is due to the fact that $$\lim_{\theta \to 0}\, \cos (\theta) = 1$$.
--------------------------------------------------
For now, we will assume the following two values of the Cosine:$$(01) \quad \cos\left(\frac{\pi}{2}\right) = 0$$$$(02) \quad \cos\left(\frac{\pi}{5}\right) = \frac{1}{2} \sqrt{ \frac{3+\sqrt{5} }{2} }$$In addition, the trigonometric identities used herein are elementary, so proofs will be omitted. The main identities used, aside from $$\cos^2 x+ \sin^2 x = 1$$, are essentially three different forms of the Cosine Double Angle formula:$$(03)\quad \sin\frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{2}}$$$$(04)\quad \cos\frac{x}{2} = \pm \sqrt{\frac{1+\cos x}{2}}$$$$(05)\quad \tan^2x= \frac{1-\cos 2x}{1+\cos 2x}$$
In identity (03), we have $$\text{sgn}= + \Leftrightarrow 0 < x < 2\pi$$, whereas in identity (04) we have $$\text{sgn}= + \Leftrightarrow -\pi < x < \pi$$.
--------------------------------------------------
Entering $$\cos(\pi/2)= 0$$ in the RHS of identity (04) gives:$$\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}= \frac{\sqrt{2}}{2}$$If we repeat this process, each time entering our new value in the RHS of identity (04), we obtain the series of values:$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$$$\cos\left(\frac{\pi}{8}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{2} }$$$$\cos\left(\frac{\pi}{16}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{2} } }$$$$\cos\left(\frac{\pi}{32}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{2} } } }$$$$\cos\left(\frac{\pi}{64}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 } } } } }$$$$\cos\left(\frac{\pi}{128}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 } } } } } }$$
We introduce the operator $$\Delta_n(x)$$, where the operation is "add 2 and then square-root the sum" $$n$$-times. Here, $$x$$ is the operand, that is the initial value that is to be operated on. Then we man write:$$\cos\left(\frac{\pi}{2^{n+1}}\right) = \frac{1}{2}\, \Delta_n(0)\quad \quad \quad n=0, 1, 2, \cdots $$Now, on the one hand, we have$$\text{limit}_{n\to \infty} \, \Delta_n(0) = \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \cdots \, } } } } } }$$whereas on the other, $$\text{limit}_{n\to \infty} \cos\left(\frac{\pi}{2^{n+1}}\right) = \text{limit}_{\theta \to 0}\, \cos \theta = \cos 0 = 1$$Equating the two, and multiplying both sides by a factor of $$2$$ then gives the following infinitely nested radical:
$$\sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \cdots \, } } } } } } = 2$$
Comments and/or questions should be posted here:
http://mathhelpboards.com/commentary-threads-53/commentary-sines-cosines-infinitely-nested-radicals-8283.html
(1) By assuming two values of the Cosine function - which will be proven later on - we develop a large number of multiply-nested radicals to express $$\cos(\pi/2^kn),\, \sin(\pi/2^kn), \,$$ and $$\tan(\pi/2^kn) $$ in closed form, for ever smaller arguments $$(k, n \in \mathbb{Z}^{+})$$.
(2) By considering the limiting values of $$\cos(\pi/2^kn),\, \sin(\pi/2^kn), \,$$ and $$\tan(\pi/2^kn) $$ as $$k\to \infty$$, we evaluate a number of infinitely-nested radicals, such as:$$\sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \cdots \, } } } } } } = 2$$(3) Finally, we consider three new (?) trigonometric functions, which I will henceforth refer to as the Fractional Sine, Cosine, and Tangent functions respectively:$$\mathscr{Fs}(\theta) = \sum_{k=0}^{\infty} \sin\left( \frac{\theta}{2^k} \right)$$$$\mathscr{Fc}(\theta) = \sum_{k=0}^{\infty} (-1)^k\cos\left( \frac{\theta}{2^k} \right)$$$$\mathscr{Ft}(\theta) = \sum_{k=0}^{\infty} \tan\left( \frac{\theta}{2^k} \right)$$Naturally, some restrictions will need to be applied to $$\theta$$ in each case, to ensure convergence. Also, note that the Fractional Cosine function is an alternating series; this is due to the fact that $$\lim_{\theta \to 0}\, \cos (\theta) = 1$$.
--------------------------------------------------
For now, we will assume the following two values of the Cosine:$$(01) \quad \cos\left(\frac{\pi}{2}\right) = 0$$$$(02) \quad \cos\left(\frac{\pi}{5}\right) = \frac{1}{2} \sqrt{ \frac{3+\sqrt{5} }{2} }$$In addition, the trigonometric identities used herein are elementary, so proofs will be omitted. The main identities used, aside from $$\cos^2 x+ \sin^2 x = 1$$, are essentially three different forms of the Cosine Double Angle formula:$$(03)\quad \sin\frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{2}}$$$$(04)\quad \cos\frac{x}{2} = \pm \sqrt{\frac{1+\cos x}{2}}$$$$(05)\quad \tan^2x= \frac{1-\cos 2x}{1+\cos 2x}$$
In identity (03), we have $$\text{sgn}= + \Leftrightarrow 0 < x < 2\pi$$, whereas in identity (04) we have $$\text{sgn}= + \Leftrightarrow -\pi < x < \pi$$.
--------------------------------------------------
Entering $$\cos(\pi/2)= 0$$ in the RHS of identity (04) gives:$$\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}= \frac{\sqrt{2}}{2}$$If we repeat this process, each time entering our new value in the RHS of identity (04), we obtain the series of values:$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$$$\cos\left(\frac{\pi}{8}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{2} }$$$$\cos\left(\frac{\pi}{16}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{2} } }$$$$\cos\left(\frac{\pi}{32}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{2} } } }$$$$\cos\left(\frac{\pi}{64}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 } } } } }$$$$\cos\left(\frac{\pi}{128}\right) = \frac{1}{2}\, \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 } } } } } }$$
We introduce the operator $$\Delta_n(x)$$, where the operation is "add 2 and then square-root the sum" $$n$$-times. Here, $$x$$ is the operand, that is the initial value that is to be operated on. Then we man write:$$\cos\left(\frac{\pi}{2^{n+1}}\right) = \frac{1}{2}\, \Delta_n(0)\quad \quad \quad n=0, 1, 2, \cdots $$Now, on the one hand, we have$$\text{limit}_{n\to \infty} \, \Delta_n(0) = \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \cdots \, } } } } } }$$whereas on the other, $$\text{limit}_{n\to \infty} \cos\left(\frac{\pi}{2^{n+1}}\right) = \text{limit}_{\theta \to 0}\, \cos \theta = \cos 0 = 1$$Equating the two, and multiplying both sides by a factor of $$2$$ then gives the following infinitely nested radical:
$$\sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \sqrt{ 2 + \cdots \, } } } } } } = 2$$
Comments and/or questions should be posted here:
http://mathhelpboards.com/commentary-threads-53/commentary-sines-cosines-infinitely-nested-radicals-8283.html
Last edited by a moderator: