Single Particle Expectation of Energy Momentum Tensor

Click For Summary
SUMMARY

The forum discussion focuses on the calculation of the energy-momentum tensor, specifically the expression $$\hat{T}_{\mu v}(x)=\partial_\mu\Phi(x)\partial_v\Phi(x)-\eta_{\mu v}\Phi^2(x)$$ using quantum field theory techniques. Participants analyze the correlation functions involving creation and annihilation operators, leading to expressions for $$\bra{\overrightarrow{P'}}\partial^\mu\Phi(0)\partial^v\Phi(0)\ket{\overrightarrow{P}}$$ and $$\bra{\overrightarrow{P'}}\Phi^2(0)\ket{\overrightarrow{P}}$$. The discussion also addresses the need for renormalization to eliminate divergences in these calculations, emphasizing the importance of careful term separation and integration over momentum space.

PREREQUISITES
  • Quantum Field Theory concepts
  • Creation and annihilation operators in quantum mechanics
  • Understanding of correlation functions
  • Renormalization techniques in quantum field theory
NEXT STEPS
  • Study the derivation of the energy-momentum tensor in quantum field theory
  • Learn about correlation functions and their physical interpretations
  • Explore renormalization methods to handle divergences in quantum field calculations
  • Investigate the role of the metric tensor $$\eta_{\mu v}$$ in field theory
USEFUL FOR

Researchers and students in theoretical physics, particularly those specializing in quantum field theory and particle physics, will benefit from this discussion. It is also relevant for anyone interested in the mathematical foundations of energy-momentum tensors and their applications in high-energy physics.

Diracobama2181
Messages
70
Reaction score
3
Homework Statement
Currently trying to explicitly calculate the following for a non interacting spin 0 field

$$\bra{\overrightarrow{P'}}\hat{T}_{\mu v}\ket{\overrightarrow{P}}
$$
where
$$\hat{T}_{\mu v}=\partial^{\mu}\Phi \partial^{v}\Phi-g^{\mu v}L$$
Relevant Equations
For this setup,
$$L=\frac{1}{2}\partial_{\mu}\Phi \partial^{\mu}\Phi-\frac{1}{2}m^2\Phi^2 $$
$$\Phi=\int\frac{d^3k}{2\omega_k (2\pi)^3}(\hat{a}(\overrightarrow{k})e^{-ikx}+\hat{a}^{\dagger}(\overrightarrow{k})e^{ikx}))$$
$$\ket{\overrightarrow{P}}=a^{\dagger}\ket{0}$$
and $$[a(\overrightarrow{k'}),a^{\dagger}(\overrightarrow{k})]=2\omega_k (2\pi)^3 \delta^3(\overrightarrow{k'}-\overrightarrow{k})$$
$$\hat{T}_{\mu v}(x)=e^{i\hat{P}x}\hat{T}_{\mu v}(0)e^{-i\hat{P}x}$$,
so $$\bra{\overrightarrow{P'}}\hat{T}_{\mu v}(x)\ket{\overrightarrow{P}}=e^{iP'x}\bra{\overrightarrow{P'}}\hat{T}_{\mu v}(0)\ket{\overrightarrow{P}}e^{-i\hat{P}x}$$
Now,
$$\partial^{\mu}\Phi=\int\frac{d^3 k_1}{2\omega_{k_1} (2\pi)^3}(-ik_1^{\mu}\hat{a}(\overrightarrow{k_1})e^{-ik_1 x}+i k_1^{\mu}\hat{a}^{\dagger}(\overrightarrow{k_1})e^{ik_1 x}))$$
and $$\partial^{v}\Phi=\int\frac{d^3 k_2}{2\omega_{k_2}(2\pi)^3}(-ik_2^{v}\hat{a}(\overrightarrow{k_2})e^{-ik_2 x}+ik_2^{v}\hat{a}^{\dagger}(\overrightarrow{k_2})e^{ik_2 x}))$$
so
$$\bra{\overrightarrow{P'}}\partial^{\mu}\Phi(0)\partial^{v}\Phi(0)\ket{\overrightarrow{P}}=\bra{0}\int\frac{d^3 k_1 d^3 k_2}{4\omega_{k_1}\omega_{k_2} (2\pi)^6}(-k_1^{\mu}k_2^{v}\hat{a'}\hat{a}_{k_1}\hat{a}_{k_2}\hat{a}^{\dagger}+k_1^{\mu}k_2^{v}\hat{a'}\hat{a}_{k_1}^{\dagger}\hat{a}_{k_2}\hat{a}^{\dagger}
+k_1^{\mu}k_2^{v}\hat{a'}\hat{a}_{k_1}\hat{a}_{k_2}\hat{a}^{\dagger}-k_1^{\mu}k_2^{v}\hat{a'}\hat{a}_{k_1}^{\dagger}\hat{a}_{k_2}^{\dagger}\hat{a}^{\dagger})\ket{0}
=k^{\mu}k^{v'}+k^{\mu'}k^{v}+\int d^3 k_1 d^3 k_2 k_1^{\mu}k_2^{v}\delta^3(\overrightarrow{k_1}-
\overrightarrow{k_2})\delta^3(\overrightarrow{k'}-\overrightarrow{k})$$
Then, using
$$\Phi^2(0)=\int \frac{d^3k_1 d^3k_1}{4\omega_{k_1}omega_{k_2} (2\pi)^3}(\hat{a_{k_1}}\hat{a_{k_2}}+\hat{a_{k_1}}\hat{a_{k_2}}^{\dagger}+\hat{a_{k_1}}^{\dagger}\hat{a_{k_2}}+\hat{a_{k_1}}^{\dagger}\hat{a_{k_2}}^{\dagger})$$
and
$$\bra{\overrightarrow{P'}}\Phi^2(0)\ket{\overrightarrow{P}}=\bra{0}\int\frac{d^3k_1 d^3k_1}{4\omega_{k_1}\omega_{k_2} (2\pi)^6}(4(2\pi)^6\omega_{k_1}\omega_{k_2}\delta^3(\overrightarrow{k_1}-\overrightarrow{k_2})\delta^3(\overrightarrow{k'}-\overrightarrow{k})+4(2\pi)^6\omega_{k_1}\omega_{k_2}\delta^3(\overrightarrow{k_1}-\overrightarrow{k})\delta^3(\overrightarrow{k'}-\overrightarrow{k_2})+4(2\pi)^6\omega_{k_1}\omega_{k_2}\delta^3(\overrightarrow{k_2}-\overrightarrow{k})\delta^3(\overrightarrow{k'}-\overrightarrow{k_1}))\ket{0}=2+\int d^3 k_1 d^3 k_1\delta^3(\overrightarrow{k_2}-\overrightarrow{k_1})\delta^3(\overrightarrow{k'}-\overrightarrow{k}))$$
Do these calculations seem correct so far? And if so, how do I go about renormalizing the equations to get rid of the divergences. Thank you.
 
Last edited:
Physics news on Phys.org
A:You're on the right track, but there's still some cleaning up that needs to be done. First you need to write the expression for $\hat{T}_{\mu v}$ in terms of the creation and annihilation operators:$$\hat{T}_{\mu v}(x)=\partial_\mu\Phi(x)\partial_v\Phi(x)-\eta_{\mu v}\Phi^2(x).$$Now you can calculate each term separately. For the first term, we have\begin{align*}\bra{\overrightarrow{P'}}\partial^\mu\Phi(0)\partial^v\Phi(0)\ket{\overrightarrow{P}}&=\int\frac{d^3k_1d^3k_2}{4\omega_{k_1}\omega_{k_2}(2\pi)^6}(-ik_1^\mu k_2^v\bra{0}\hat{a}(\overrightarrow{k_1})\hat{a}(\overrightarrow{k_2})\hat{a}^\dagger(\overrightarrow{P})\hat{a}^\dagger(\overrightarrow{P'})\ket{0}\tag{1}\\&+ik_1^\mu k_2^v\bra{0}\hat{a}^\dagger(\overrightarrow{k_1})\hat{a}(\overrightarrow{k_2})\hat{a}^\dagger(\overrightarrow{P})\hat{a}^\dagger(\overrightarrow{P'})\ket{0}\tag{2}\\&-ik_1^\mu k_2^v\bra{0}\hat{a}(\overrightarrow{k_1})\hat{a}^\dagger(\overrightarrow{k_2})\hat{a}^\dagger(\overrightarrow{P})\hat{a}^\dagger(\overrightarrow{P'})\ket{0}\tag{3}\\&+ik_1^\mu k_2^v\bra{
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K