MHB Sketch of the Reflection Transformation of a Parallelogram

bwpbruce
Messages
60
Reaction score
1
$\textbf{Problem:}$
Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation that reflects each point through the $x_2$ axis. Make two sketches that illustrate properties of linear transformation.

$\textbf{Solution:}$
Let $T(\textbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$

Let
$\textbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \textbf{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$
And $\textbf{u + v} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$

Then
$T\textbf{u} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$
$T\textbf{v} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$
$T\textbf{u + v} =\begin{bmatrix} -7 \\ 7 \end{bmatrix}$
$T\textbf{(0)} = \textbf{0}$

View attachment 3893
 

Attachments

  • Axis Reflection.png
    Axis Reflection.png
    10.8 KB · Views: 102
  • Reflection About X_2 Axis.png
    Reflection About X_2 Axis.png
    6.2 KB · Views: 101
Physics news on Phys.org
Seems good to me. Which software did you use to make the drawing?
 
Evgeny.Makarov said:
Seems good to me. Which software did you use to make the drawing?

Geogebra
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top