MHB Sketch of the Reflection Transformation of a Parallelogram

bwpbruce
Messages
60
Reaction score
1
$\textbf{Problem:}$
Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation that reflects each point through the $x_2$ axis. Make two sketches that illustrate properties of linear transformation.

$\textbf{Solution:}$
Let $T(\textbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$

Let
$\textbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \textbf{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$
And $\textbf{u + v} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$

Then
$T\textbf{u} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$
$T\textbf{v} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$
$T\textbf{u + v} =\begin{bmatrix} -7 \\ 7 \end{bmatrix}$
$T\textbf{(0)} = \textbf{0}$

View attachment 3893
 

Attachments

  • Axis Reflection.png
    Axis Reflection.png
    10.8 KB · Views: 105
  • Reflection About X_2 Axis.png
    Reflection About X_2 Axis.png
    6.2 KB · Views: 102
Physics news on Phys.org
Seems good to me. Which software did you use to make the drawing?
 
Evgeny.Makarov said:
Seems good to me. Which software did you use to make the drawing?

Geogebra
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top