MHB Sketch of the Reflection Transformation of a Parallelogram

bwpbruce
Messages
60
Reaction score
1
$\textbf{Problem:}$
Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation that reflects each point through the $x_2$ axis. Make two sketches that illustrate properties of linear transformation.

$\textbf{Solution:}$
Let $T(\textbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ x_2 \end{bmatrix}$

Let
$\textbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \textbf{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$
And $\textbf{u + v} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$

Then
$T\textbf{u} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$
$T\textbf{v} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$
$T\textbf{u + v} =\begin{bmatrix} -7 \\ 7 \end{bmatrix}$
$T\textbf{(0)} = \textbf{0}$

View attachment 3893
 

Attachments

  • Axis Reflection.png
    Axis Reflection.png
    10.8 KB · Views: 105
  • Reflection About X_2 Axis.png
    Reflection About X_2 Axis.png
    6.2 KB · Views: 104
Physics news on Phys.org
Seems good to me. Which software did you use to make the drawing?
 
Evgeny.Makarov said:
Seems good to me. Which software did you use to make the drawing?

Geogebra
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads