MHB Sketching absolute value graph

Click For Summary
The discussion focuses on sketching the region defined by the inequality |x-y| + |x| - |y| ≤ 2. One method involves rewriting the inequality to derive conditions for y, specifically y ≥ |x| - 1 and y ≤ -(|x| - 1. The conversation outlines how to approach the problem by considering different cases based on the signs of x and y, leading to specific regions to shade on the Cartesian plane. The first two cases are explored in detail, demonstrating how to identify valid regions that satisfy the inequality. The thread encourages further exploration of the remaining cases for a complete understanding of the solution.
GusGus335
Messages
1
Reaction score
0
Sketch the region in the plane consisting of all points (x,y) such that
|x-y|+|x|-|y|<=2
 
Mathematics news on Phys.org
GusGus335 said:
Sketch the region in the plane consisting of all points (x,y) such that
|x-y|+|x|-|y|<=2

His GusGus335! Welcome to MHB!

I believe there are many different methods to sketch the wanted region as stated by the given inequality, and here is one of the methods that you could adopt:

First, rewrite the given inequality as $|x-y|\le 2+|y|-|x|$. And we then exploit the fact that $|x|-|y|\le |x-y|$, we get $|x|-|y|\le 2+|y|-|x|$, solving it for $|y|$, we see that we have:

$|y|\ge |x|-1$, which then suggests we have to shade the regions where $y\ge |x|-1$ and $y\le -(|x|-1)$ respectively on the Cartesian plane. Like showed in the diagram below:

[desmos="-10,10,-10,10"]y\ge \left|x\right|-1;;y\le -\left(\left|x\right|-1\right)[/desmos]

But things don't end there. We need to weed out the unwanted region(s) that don't satisfy the given inequality. We could do so by considering four cases:

Case I ($x\ge 0$ and $y\ge 0$ that correspond to $y\ge |x|-1$):

For this part, we have $-|x|+|y|\le |x-y| \le 2+|y|-|x|$, which it then gives us $0\le 2$. That means the area shaded in this area must be correct.

Case II ($x\le 0$ and $y\ge 0$ that correspond to $y\ge |x|-1$):

For this part, we have $|x|+|y|\le |x-y| \le 2+|y|-|x|$, which it then gives us $|x|\le 1$, i.e. $-1\le x \le 1$. We therefore should only shade the region of $y\ge |x|-1$ that covers the interval $-1\le x \le 0$.

i.e. we should get the shaded region shown as the picture below:

[desmos="-10,10,-10,10"]y\ge \left|x\right|-1\left\{x\ge -1\right\}[/desmos]

I will leave the other two cases for you to work them out, and I encourage you to post back to see if you get the drift of my message.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K