MHB Sketching absolute value graph

AI Thread Summary
The discussion focuses on sketching the region defined by the inequality |x-y| + |x| - |y| ≤ 2. One method involves rewriting the inequality to derive conditions for y, specifically y ≥ |x| - 1 and y ≤ -(|x| - 1. The conversation outlines how to approach the problem by considering different cases based on the signs of x and y, leading to specific regions to shade on the Cartesian plane. The first two cases are explored in detail, demonstrating how to identify valid regions that satisfy the inequality. The thread encourages further exploration of the remaining cases for a complete understanding of the solution.
GusGus335
Messages
1
Reaction score
0
Sketch the region in the plane consisting of all points (x,y) such that
|x-y|+|x|-|y|<=2
 
Mathematics news on Phys.org
GusGus335 said:
Sketch the region in the plane consisting of all points (x,y) such that
|x-y|+|x|-|y|<=2

His GusGus335! Welcome to MHB!

I believe there are many different methods to sketch the wanted region as stated by the given inequality, and here is one of the methods that you could adopt:

First, rewrite the given inequality as $|x-y|\le 2+|y|-|x|$. And we then exploit the fact that $|x|-|y|\le |x-y|$, we get $|x|-|y|\le 2+|y|-|x|$, solving it for $|y|$, we see that we have:

$|y|\ge |x|-1$, which then suggests we have to shade the regions where $y\ge |x|-1$ and $y\le -(|x|-1)$ respectively on the Cartesian plane. Like showed in the diagram below:

[desmos="-10,10,-10,10"]y\ge \left|x\right|-1;;y\le -\left(\left|x\right|-1\right)[/desmos]

But things don't end there. We need to weed out the unwanted region(s) that don't satisfy the given inequality. We could do so by considering four cases:

Case I ($x\ge 0$ and $y\ge 0$ that correspond to $y\ge |x|-1$):

For this part, we have $-|x|+|y|\le |x-y| \le 2+|y|-|x|$, which it then gives us $0\le 2$. That means the area shaded in this area must be correct.

Case II ($x\le 0$ and $y\ge 0$ that correspond to $y\ge |x|-1$):

For this part, we have $|x|+|y|\le |x-y| \le 2+|y|-|x|$, which it then gives us $|x|\le 1$, i.e. $-1\le x \le 1$. We therefore should only shade the region of $y\ge |x|-1$ that covers the interval $-1\le x \le 0$.

i.e. we should get the shaded region shown as the picture below:

[desmos="-10,10,-10,10"]y\ge \left|x\right|-1\left\{x\ge -1\right\}[/desmos]

I will leave the other two cases for you to work them out, and I encourage you to post back to see if you get the drift of my message.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
45
Views
4K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
5
Views
1K
Replies
1
Views
1K
Back
Top