Hi. In case potential energy V(x) in one dimensional stationary Shrodinger equation does not have smoothness of C-infinity, I assume that some power n of momentum for an energy eigenstate, <p^n>, diverge. Finite square well potential gives infinite <p^n> for n=6,8,10,.. for example. <p^4> also diverges for infinite square well. Could you advise me if the assumption is right? Thanks in advance.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Smoothness of potential energy and powers of momentum

**Physics Forums | Science Articles, Homework Help, Discussion**