MHB So I get the same answer as the book except for a constant term.

Click For Summary
The discussion revolves around the integration of the function sin³x cos³x, where the original poster's calculated answer differs from the book's solution. The poster initially arrived at an expression involving cos(2x) but later acknowledged that their approach might have errors. A suggestion was made to rewrite the integral using a different substitution, which led to a more accurate representation of the integral. Ultimately, the calculations confirmed that the book's answer could be derived from the poster's work, indicating that the discrepancy was due to the method of substitution used. The conversation emphasizes the importance of careful substitution in trigonometric integrals.
paulmdrdo1
Messages
382
Reaction score
0
i'm kind of unsure of my solution here please check.

$\displaystyle\int \sin^3x\cos^3x= \int(\sin x \cos x)^3 =\int(\frac{1}{2}\sin2x)^3=\frac{1}{8}\int \sin^3 2x dx$

$\displaystyle u=2x$; $\displaystyle du=2dx$; $\displaystyle dx=\frac{1}{2}du$

$\displaystyle \frac{1}{8}\int \frac{1}{2}\sin^3 u du= \frac{1}{16}\int \sin^3 udu=\frac{1}{16}\int \sin^2 u(\sin u)du=\frac{1}{16}\int \sin u(1-\cos^2 u)du$

$\displaystyle z=\cos u$; $\displaystyle dz=-\sin u du$; $\displaystyle du=-\frac{dz}{\sin u}$$\displaystyle-\frac{1}{16}\int \sin u(1-z^2)\frac{dz}{\sin u}=-\frac{1}{16}\int (1-z^2)dz$

$\displaystyle-\frac{1}{16}\left(z-\frac{z^3}{3}\right)+C=-\frac{1}{16}z+\frac{1}{48}z^3+C$= $\displaystyle -\frac{1}{16}\cos 2x+\frac{1}{48}\cos^3 2x+C$ ---> this is my answer

but in my book the answer is different $\displaystyle \frac{1}{4}\sin^4 x-\frac{1}{6}\sin^6 x+C$

please tell me where i was wrong.
 
Last edited:
Physics news on Phys.org
Re: trigonometric integrals

Well the first thing that sticks out is that if you make the substitution \displaystyle \begin{align*} z = \cos{(u)} \end{align*} then \displaystyle \begin{align*} dz = -\sin{(u)}\,du \end{align*}...
 
Re: trigonometric integrals

Prove It said:
Well the first thing that sticks out is that if you make the substitution \displaystyle \begin{align*} z = \cos{(u)} \end{align*} then \displaystyle \begin{align*} dz = -\sin{(u)}\,du \end{align*}...

i've changed my answer to this $\displaystyle -\frac{1}{16}\cos 2x+\frac{1}{48}\cos^3 2x+C$

can you help me with the other mistakes.
 
Re: trigonometric integrals

I would rewrite the integral as:

$$\int \sin^3(x)\left(1-\sin^2(x) \right)\cos(x)\,dx=\int\sin^3(x)\cos(x)\,dx-\int\sin^5(x)\cos(x)\,dx$$

and then for both integrals use the substitution:

$$u=\sin(x)\,\therefore\,du=\cos(x)\,dx$$
 
Re: trigonometric integrals

paulmdrdo said:
= $\displaystyle -\frac{1}{16}\cos 2x+\frac{1}{48}\cos^3 2x+C$ ---> this is my answer

but in my book the answer is different $\displaystyle \frac{1}{4}\sin^4 x-\frac{1}{6}\sin^6 x+C$

please tell me where i was wrong.

I get the same result following your work so I feel the book is a different version of yours.

$\cos(2x) = 1-2\sin^2(x)$
$\displaystyle -\frac{1}{16}(1-2\sin^2(x))+\frac{1}{48}(1-2\sin^2(x))^3+C$

$\displaystyle -\frac{1}{16} + \frac{1}{8}\sin^2(x)) +\frac{1}{48} ( 1 - 6\sin^2(x) + 12\sin^4(x) - 8\sin^6(x))+ C$

$\displaystyle -\frac{1}{16} + \frac{1}{8}\sin^2(x)) +\frac{1}{48} - \frac{1}{8}\sin^2(x) + \frac{1}{4}\sin^4(x) - \frac{1}{6}\sin^6(x)+ C$

$\displaystyle -\frac{1}{16} +\frac{1}{48} + \frac{1}{4}\sin^4(x) - \frac{1}{6}\sin^6(x)+ C$

$\displaystyle -\frac{1}{16} +\frac{1}{48} + \frac{1}{4}\sin^4(x) - \frac{1}{6}\sin^6(x)+ C' \text{ where } C' = C + \frac{1}{16} - \frac{1}{48}$

$\displaystyle \frac{1}{4}\sin^4(x) - \frac{1}{6}\sin^6(x)+ C'$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
3K