So, my question is, where did I go wrong in my approach?

Click For Summary
The discussion revolves around proving that the dimension of a subspace S of L²([0,1]) is at most K², given the condition |f(x)| ≤ K ||f|| for all f in S. Participants suggest using Bessel's inequality and consider an orthonormal basis for S to explore the implications of the dimension m. There are challenges in applying Bessel's inequality effectively, with attempts leading to circular reasoning or contradictions. A key insight emerges when assuming K=1, leading to the conclusion that functions must have a modulus of 1, which raises questions about the uniqueness of functions in the basis and suggests potential contradictions regarding the dimension of S. The discussion highlights the complexity of the problem and the need for a clearer understanding of the underlying concepts.
Doom of Doom
Messages
85
Reaction score
0
Let S be a subspace of L^{2}(\left[0,1\right]) and suppose \left|f(x)\right|\leq K \left\| f \right\| for all f in S.

Show that the dimension of S is at most K^{2}

---------

The prof hinted us to use Bessel's inequality.

Namely, let \left\{ u_1,\dots, u_m \right\} be a set of orthonormal vectors in L^{2}(\left[0,1\right]). Then \left\| f \right\|^2 \geq \sum_{k=1}^m \left| \left\langle f, u_k \right\rangle\right|^2

I just keep getting stuck, and getting things like

\left\|f \right\|^2 =\int_0^1 \left|f(x)\right|^2 dx \leq \int_0^1 K^2 \left\|f \right\|^2 dx = K^2 \left\|f \right\|^2

and I can't figure out how to apply Bessel's inequality.

I guess the goal is to assume m linear independent vectors, and show that m is less than K^2. Help, please?
 
Physics news on Phys.org
haven't totally put it together yet, but I'm thinking start with assuming an orthonormal basis for S:{...,ui ...} of dimension m.

Try expanding f in terms of the basis function & then knowing both the ui and f satsify the given inequality, hopefully you can find a contradiction if m>K2 as you say
 
Last edited:
considering a function which is a certain linear combination of an orthogonal basis for S should help. As S is a subspace, its closed under linear combinations, so the function is contained in S
 
Last edited:
Still at a loss...

So: Assume {u1, ..., um} is an orthonormal basis of S.
I'm trying the function f= u1 + ... + um. Is this the right one to consider? It certainly is the nicest.

Then ||f|| = sqrt(m).

I still don't know where exactly to apply the Bessels inequality. If I do, all I keep getting is that
m^2 < m^2 K
which tells me nothing.

More help? Thanks for the response.
 
Last edited:
must be missing something.. thought it would follow on, but when i went to work it completely, went in a circle...

now I'm not even so sure i understand the question correctly, what about sinusoidal basis functions, couldn't you have an infinite orthogonal number of those with ||f|| =1, and maximum magnitude ~ sqrt(2)

will pass it on to some of the other guys to have a look
 
Last edited:
Ok, I'm started off with a different approach to see if I could understand this a bit better... and it only leads me to believe that the problem must be wrong.
----

Assume K=1 (since that is the smallest it can be). Then S is the set of functions on [0,1] such that |f(x)| < ||f|| for all x in [0,1]. For simplicity, let's just say that ||f|| =1.

But the integral of |f(x)|^2 from 0 to 1 must be 1, and |f(x)| can never be less than 1. Thus, it must be the case that |f(x)|=1 for all x on the interval.

So the modulus of f(x) is always 1, and thus f(x)=e^{ia(x)} for some function a(x).

Then the inner product of f with some other function g is
\left\langle f,g\right\rangle=\int_0^1 e^{i(a(x)-b(x))}dx.

But this integral does not necessarily have to have a modulus of 1 (indeed consider a(x)=2x and b(x)=x), and thus g is not a multiple of f. This leads me to believe that there must be more than one function in the basis for S, a contradiction to the dimension of S being less than or equal to K=1.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K