MHB Solution to the Riemann Hypothesis in plain English

Zebobez
Messages
3
Reaction score
0
The number line at x=1/2 is mediated by a concurrent incentive field whose shape can be extrapolated through the placement of prime numbers. Each prime number is a turning point in the n-dimensional movement of the imaginary number line, whose degree and angle can be determined through all the prime numbers before it and the non-prime factors within it. Foe example, the prime number 7 is a 1-3-5 degree turn around the attractor shape. Chaos theory mediates the actual form of the shape, which is defined by a single seed that can be extrapolated through a reduction of the attractor vortex.

Prime numbers, therefore, are mediated upon by implicative stressors that originate from the chaotic vortex whose shape can be found through the distribution of prime numbers. In essence, prime numbers are not the end of a chain; rather, they are a originative effect of a large-scale n-dimensional attractor in number field space. View attachment 7662

- - - Updated - - -

For clarification, the attractor's shape is defined by the Riemann symmetry, in the same way that all chaotic attractors are symmetrical. Each prime number emerges from the interactions between the non-prime numbers before it and their less-than-one unit strength (which is defined as how attracted to the attractor they are.) Sort of like how the moon causes tides to rise and fall. Prime numbers are the highest and the lowest tide points.
 

Attachments

  • attractor.png
    attractor.png
    2.5 KB · Views: 164
Mathematics news on Phys.org
The symmetry may be just something I threw in because I didn't understand it, it may or may not actually have a bearing on the attractor's form.
 
Hi Zebobez and welcome to MHB!

What is a "concurrent incentive field"?
 
Zebobez said:
The number line at x=1/2 is mediated by a concurrent incentive field whose shape can be extrapolated through the placement of prime numbers. Each prime number is a turning point in the n-dimensional movement of the imaginary number line, whose degree and angle can be determined through all the prime numbers before it and the non-prime factors within it. Foe example, the prime number 7 is a 1-3-5 degree turn around the attractor shape. Chaos theory mediates the actual form of the shape, which is defined by a single seed that can be extrapolated through a reduction of the attractor vortex.

Prime numbers, therefore, are mediated upon by implicative stressors that originate from the chaotic vortex whose shape can be found through the distribution of prime numbers. In essence, prime numbers are not the end of a chain; rather, they are a originative effect of a large-scale n-dimensional attractor in number field space.

- - - Updated - - -

For clarification, the attractor's shape is defined by the Riemann symmetry, in the same way that all chaotic attractors are symmetrical. Each prime number emerges from the interactions between the non-prime numbers before it and their less-than-one unit strength (which is defined as how attracted to the attractor they are.) Sort of like how the moon causes tides to rise and fall. Prime numbers are the highest and the lowest tide points.
Absolutely wonderful! Hilarious!
(I can see why you wouldn't want to wait for April 1.)
 
Basically, the convex point of this chaotic attractor is the explanation for why prime numbers behave the way that they do. Each prime number, and its subsets of numbers, curve the number line in n-dimensional space, and the shape they imply has a midpoint that can be described using linear coordinates, with each axis bearing a fundamental value related to the sequence of prime numbers.
 
This is crank mathematics and moderator input is being ignored. Thread closed.

If anyone disagrees with this decision please PM a site administrator.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
0
Views
2K
Replies
4
Views
3K
Replies
7
Views
3K
Replies
1
Views
2K
Replies
1
Views
5K
Replies
14
Views
5K
2
Replies
67
Views
14K
Replies
13
Views
3K
Back
Top