- #1

Zebobez

- 3

- 0

The number line at x=1/2 is mediated by a concurrent incentive field whose shape can be extrapolated through the placement of prime numbers. Each prime number is a turning point in the n-dimensional movement of the imaginary number line, whose degree and angle can be determined through all the prime numbers before it and the non-prime factors within it. Foe example, the prime number 7 is a 1-3-5 degree turn around the attractor shape. Chaos theory mediates the actual form of the shape, which is defined by a single seed that can be extrapolated through a reduction of the attractor vortex.

Prime numbers, therefore, are mediated upon by implicative stressors that originate from the chaotic vortex whose shape can be found through the distribution of prime numbers. In essence, prime numbers are not the end of a chain; rather, they are a originative effect of a large-scale n-dimensional attractor in number field space. View attachment 7662

- - - Updated - - -

For clarification, the attractor's shape is defined by the Riemann symmetry, in the same way that all chaotic attractors are symmetrical. Each prime number emerges from the interactions between the non-prime numbers before it and their less-than-one unit strength (which is defined as how attracted to the attractor they are.) Sort of like how the moon causes tides to rise and fall. Prime numbers are the highest and the lowest tide points.

Prime numbers, therefore, are mediated upon by implicative stressors that originate from the chaotic vortex whose shape can be found through the distribution of prime numbers. In essence, prime numbers are not the end of a chain; rather, they are a originative effect of a large-scale n-dimensional attractor in number field space. View attachment 7662

- - - Updated - - -

For clarification, the attractor's shape is defined by the Riemann symmetry, in the same way that all chaotic attractors are symmetrical. Each prime number emerges from the interactions between the non-prime numbers before it and their less-than-one unit strength (which is defined as how attracted to the attractor they are.) Sort of like how the moon causes tides to rise and fall. Prime numbers are the highest and the lowest tide points.