MHB Solutions of an inequality (1-√(1-4x^2)/x < 3

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on solving the inequality (1 - √(1 - 4x²))/x < 3. Participants clarify that x must be in the range of -1/2 to 1/2 due to the square root condition. The correct approach involves solving the associated equation √(1 - 4x²)/x = 3, leading to the quadratic equation 13x² - 6x = 0, which has roots at x = 0 and x = 6/13. The importance of checking intervals around these roots and the discontinuity at x = 0 is emphasized to determine where the function is less than 3. The conversation highlights the need for careful handling of terms during the manipulation of the inequality.
Vali
Messages
48
Reaction score
0
I need to find the solutions of the following inequation:
(1-sqrt(1-4x^2)/x < 3
I put the conditions x different from 0 and 1-4x^2>=0 and I got [-1/2,0)U(0,1/2] which is the right answer but I'm confuse because I usually subtract 3 to get (1-sqrt(1-4x^2)/x - 3 < 0 then, after I made some work and I got a fraction, I find the variation of each function (from numerator and denominator) and in the final I find the sign of f(x) which should be negative in our case and like this I find the solutions, but I didn;t get the same result.
 
Mathematics news on Phys.org
Vali said:
I need to find the solutions of the following inequation:
(1-sqrt(1-4x^2)/x < 3
I put the conditions x different from 0 and 1-4x^2>=0 and I got [-1/2,0)U(0,1/2] which is the right answer but I'm confuse because I usually subtract 3 to get (1-sqrt(1-4x^2)/x - 3 < 0 then, after I made some work and I got a fraction, I find the variation of each function (from numerator and denominator) and in the final I find the sign of f(x) which should be negative in our case and like this I find the solutions, but I didn;t get the same result.
You are missing a parenthesis. Do you mean (1- sqrt(1- 4x^2))/x< 3?

First, because of the \sqrt{1- 4x^2}, x must lie between -1/2 and 1/2.

In my opinion the best way to handle such an inequality is to first solve the associated equation, \frac{\sqrt{1- 4x^2}}{x}= 3. To solve that multiply both sides by x to get \sqrt{1- 4x^2}= 3x and square both sides to get 1- 4x^2= 9x^2. Then 13x^2= 1, x= \pm\sqrt{1/13}.

The point of that is that in order that the value of a function change from "< 3" to "> 3" it must either be "= 3" or be discontinuous. This function is 3 at x=\pm\sqrt{1/13} and, because of the division by 3, is discontinuous at x= 0.

Now, check one value in each interval, -1/2\le x\le -\sqrt{1/13}, -\sqrt{1/13}\le x&lt; 0, 0&lt; x\le \sqrt{1/13}, and \sqrt{1/13}\le x\le 1/2 to determine in which interval the value is less than 3 and in which the value greater than 3.
 
Thank you for the help!
I understood, but I have one question.Why the associated equation is sqrt(1-4x^2)/x=3 and not (1-sqrt(1-4x^2))/x=3 ? Why you cancel that "1" ?
 
I just mistakenly dropped it! Yes, the associated equation should be \frac{1- \sqrt{1- x^2}}{x}= 3 so that 1- \sqrt{1- 4x^2}= 3x. Then \sqrt{1- 4x^2}= 1- 3x and, squaring both sides, 1- 4x^2= 9x^2- 6x+ 1. That gives us the quadratic equation 13x^2- 6x= x(13x- 6)= 0 which has roots 0 and -6/13.
 
Country Boy said:
That gives us the quadratic equation 13x^2- 6x= x(13x- 6)= 0
which has roots 0 and -6/13.
0 and 6/13 :)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
16
Views
857
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K