MHB Solve Box Cost Minimization w/ Lagrange Multipliers

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Please help!? lagrange multiplier method?


Find the dimensions of the box which will minimize the TOTAL COST of manufacturing the following open top box of volume 6ft^3?

Solve by the lagrange multiplier method!
Bottom panel costs $3/ft^2
side panel cost $.50/ft^2
Front and back panels cost $1/ft^2

I have posted a link there to this topic so the OP can view my work.
 
Mathematics news on Phys.org
Hello acacia,

I would orient the box such that the width is $x$, the height is $y$ and the length is $z$. Hence, the bottom panel has area $xz$, the side panels have a total area of $2yz$ and the front and back panels have a combined area of $2xy$.

Let all linear measures be given in feet.

Thus, our objective function, the function we wish to minimize is the cost function in dollars, which is given by:

$$C(x,y,z)=3xz+yz+2xy$$

Subject to the constraint on the volume:

$$g(x,y,z)=xyz-6=0$$

Using Lagrange multipliers, we obtain:

$$3z+2y=\lambda(yz)$$

$$z+2x=\lambda(xz)$$

$$3x+y=\lambda(xy)$$

Solving for $\lambda$, the first two equations imply:

$$\frac{2y+3z}{yz}=\frac{2x+z}{xz}$$

Cross-multiplying, we obtain:

$$2xyz+3xz^2=2xyz+yz^2$$

$$3xz^2=yz^2$$

Since the constraint requires $$0<z$$, we may write:

$$3x=y$$

In like manner the first and third equations above imply:

$$\frac{2y+3z}{yz}=\frac{3x+y}{xy}$$

Cross-multiplying, we obtain:

$$2xy^2+3xyz=3xyz+y^2z$$

$$2x=z$$

Substituting for $y$ and $z$ into the constraint, we obtain:

$$x(3x)(2x)=6$$

$$x^3=1$$

$$x=1\implies y=3,\,z=2$$

Observing that:

$$C(1,3,2)=3(1)(2)+(3)(2)+2(1)(3)=18$$

and another constraint value such as $(x,y,z)=(1,2,3)$ yields:

$$C(1,2,3)=3(1)(3)+(2)(3)+2(1)(2)=19$$

We may then conclude:

$$C_{\min}=C(1,3,2)=18$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top