MHB Solve Circle Radius Given Trapezoid Height & Length

Jeppe1
Messages
2
Reaction score
0
I don't know if this can be calculated.
I have tried for hours and days to isolate/calculate the radius and angles of the circle in order to be able to calculate length 1. I have tried using cos/sin-relation formulas and triangle formas - but Iam stuck. Any hints would be greatly appreciated. The task is one i have put on my self for cutting out a wooden plate. I have made the cut - but by approximation :-)

View attachment 3333
 

Attachments

  • Can this be calculated.JPG
    Can this be calculated.JPG
    28.1 KB · Views: 113
Mathematics news on Phys.org
Hi Jeppe,

Unfortunately, without more information, the four unknowns cannot be determined.
 
Draw horizontal lines through the points where the lines $h_1$ and $h_2$ meet the circle. That will give you a pair of right-angled triangles. You can then use Pythagoras to get the equations $$(r-h_1)^2 + l_1^2 = r^2,$$ $$(r-h_2)^2 + (l_1+l_2)^2 = r^2.$$ After a bit of algebra (expanding those brackets), the equations reduce to $$h_1^2 - 2rh_1 + l_1^2 = 0,\qquad (*)$$ $$h_2^2 - 2rh_2 + l_1^2 + 2l_1l_2 + l_2^2.$$ Subtract the first of those equations from the second: $$h_2^2 - h_1^2 - 2r(h_2 - h_1) + 2l_1l_2 + l_2^2 = 0.$$ Solve that for $l_1$: $$l_1 = \frac{(h_2 - h_1)(2r - h_1 - h_2) - l_2^2}{2l_2}.$$ Substitute that expression for $l_1$ into the equation labelled (*) and you will have a quadratic equation (admittedly quite a messy one) for $r$ in terms of $h_1$, $h_2$ and $l_2$.

Edit (@Euge): I am assuming that the horizontal blue line is meant to be tangential to the circle. That should determine the configuration, shouldn't it?
 
Opalg said:
Edit (@Euge): I am assuming that the horizontal blue line is meant to be tangential to the circle. That should determine the configuration, shouldn't it?

Yes, in that case it does. We would then have $\tan \phi_1 = \frac{\ell_1}{r-h_1}$ and $\tan (\phi_1 + \phi_2) = \frac{\ell_1 + \ell_2}{r-h_2}$, so then

$$\tan \phi_2 = \frac{\tan (\phi_1 + \phi_2) - \tan \phi_1}{1 + \tan (\phi_1 + \phi_2) \tan \phi_1} = \frac{(r - h_2)\ell_1 - (r - h_1)(\ell_1 + \ell_2)}{(r - h_1)(r - h_2) + \ell_1(\ell_1 + \ell_2)}.$$

Since $r$ and $\ell_1$ have been determined, it now follows that the entire configuration is determined.
 
Wow - that was fast ! - I will get working on the quadratic!
Thanks and thanks again! - best forum and page ever :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top