Solve Definite Integral: Invalid Answer Error

Click For Summary
SUMMARY

The discussion centers on solving the definite integral $\displaystyle \int_{-3}^{-2}\frac{y+2}{y^2+4y}dy$ and the resulting "invalid answer" error encountered during calculations. The user correctly applies the substitution $u=y^2+4y$ and finds $du=2y+4dy$, leading to the integral $\frac{1}{2}\int\frac{du}{u}$. However, the final evaluation of the definite integral reveals an error due to the absolute values of negative numbers. The correct evaluation requires using $|-4|=4$ and $|-3|=3$ to avoid errors in the logarithmic calculations.

PREREQUISITES
  • Understanding of definite integrals and substitution methods in calculus
  • Familiarity with logarithmic properties and absolute values
  • Basic knowledge of calculus notation and integration techniques
  • Experience with evaluating integrals involving rational functions
NEXT STEPS
  • Review the properties of logarithms, particularly the handling of absolute values
  • Practice solving definite integrals using substitution with various functions
  • Explore common pitfalls in integral calculus to avoid calculation errors
  • Learn about numerical methods for verifying integral calculations
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral calculus, and anyone troubleshooting errors in definite integral evaluations.

paulmdrdo1
Messages
382
Reaction score
0
i tried to solve this definite integral but i keep on getting an invalid answer. please check my error.

$\displaystyle \int_{-3}^{-2}\frac{y+2}{y^2+4y}dy$

$\displaystyle u=y^2+4y$
$\displaystyle du=2y+4dy$
$\displaystyle dy=\frac{du}{2y+4}$

$\displaystyle \frac{1}{2}\int\frac{y+2}{u}\times \frac{du}{2(y+2)}=\frac{1}{2}\int\frac{du}{u}= \frac{1}{2}\ln|u|+c= \frac{1}{2}\ln|y^2+4y|+c$

when i calculate the definite integral i always get an error.

$\displaystyle\frac{1}{2}\ln|(-2)^2+4(-2)|-\frac{1}{2}\ln|(-3)^2+4(-3)| = ?$
 
Physics news on Phys.org
What you have done so far is correct...what is your final answer?
 
$\displaystyle\frac{1}{2}\ln|(-2)^2+4(-2)|-\frac{1}{2}\ln|(-3)^2+4(-3)| = \frac{1}{2}\ln|-4|-\frac{1}{2}\ln|-3|= ?$ i punch this in the calculator it gives me an error.
 
Use:

$$|-4|=4,\,|-3|=3$$

to write your solution.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K