MHB Solve Distance Problem A & B: 6 & 10 Min Circular Mile Track

  • Thread starter Thread starter bergausstein
  • Start date Start date
bergausstein
Messages
191
Reaction score
0
A and B can run around a circular mile track in 6 and 10 minutes respectively. If they start at the same instant from the same place, in how many minutes will they pass each other if they run around the track (a) in the same direction, (6) in opposite directions?

can you help solve the first part of the question? thanks!
 
Mathematics news on Phys.org
I think I would first observe that the size of the track is irrelevant, and we can let the radius of the track be 1 unit. Then, I would describe the position of the runners parametrically, with time = $t$, as the parameter, measured in minutes. Let the runners begin at (1,0) and move in a counter-clockwise direction. Then their positions can be given by:

$$x(t)=\cos\left(\frac{2\pi}{T}t \right)$$

$$y(t)=\sin\left(\frac{2\pi}{T}t \right)$$

where $T$ is the period of their motion, i.e., the time (in minutes) it takes for them to complete one circuit of the track.

Then equate the respective coordinates of both runners, and take the first positive solution for $t$.
 
MarkFl, I appreciate what you posted above. But it seems that it isn't in the realm of what I can comprehend at this point in time since I'm just beginning to learn algebra. can you show me the simple approach to this problem? thanks!
 
Yes, now that I think about it more, there is a much simpler approach. :D

Let $C$ be the circumference of the track, and using distance = rate times time, and subscripting the faster runner's parameters with a 1 and the slower runner with a 2. We may use the fact that when the faster runner laps the slower runner, his distance ran will be one more circumference than the slower runner, and write:

$$d_1=d_2+C$$

Use $d=vt$:

$$v_1t=v_2t+C$$

What are the velocities of the two runners?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top