That depends upon what you mean by "closed form" or "algebraic" solution.
This is obviously equivalent to k2k= n and, since 2k= ekln(2), k ek ln(2)= n. Multiplying on both sides by ln 2, (k ln(2)) ek ln(2)= n ln(2). If we let y= k ln(2), that equation is yey= n ln(2).
That equation is directly solvable by the Lambert W function (which is simply defined as the inverse function to f(x)= xex): k ln(2)= y= W(n ln(2)) so
k= W(n ln(2))/ln(2).