Alternatively, you could apply the Exponential Integral function $$\text{Ei}(x)$$ defined below:
$$\text{Ei}(x) = \int \frac{e^x}{x}\, dx = \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!}$$
$$\text{Ei}'(x) = \frac{d}{dx}\text{Ei}(x) = \frac{d}{dx}\, \int \frac{e^x}{x}\, dx = \frac{e^x}{x} $$Hence$$\int e^x\sqrt{x}\, dx = \int x^{3/2} \frac{e^x}{x}\, dx = \int x^{3/2} \left[ \frac{d}{dx} \text{Ei}(x) \right]\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \text{Ei}(x)\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \Bigg\{ \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!} \Bigg\} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + \frac{3}{2}\, \sum_{k=1}^{\infty}\frac{1}{k\cdot k!} \int x^{k+1/2} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} $$Finally, assuming that $$x > 0$$, we can drop the absolute value sign in the logarithm.
$$\int \sqrt{x}\log x\, dx = \frac{2 x\sqrt{x}}{3}\, \log x - \frac{4 x\sqrt{x}}{9}$$Hence$$\int e^x\sqrt{x}\, dx =$$$$x\sqrt{x}\,\text{Ei}(x) - x\sqrt{x}\log x + \frac{2x\sqrt{x}}{3} + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} =
$$$$x\sqrt{x}\, \left[ \text{Ei}(x) - \log x + \frac{2}{3} + 3\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} \right]
$$