MHB Solve Integral by Parts: exsqrt(x)

  • Thread starter Thread starter leprofece
  • Start date Start date
  • Tags Tags
    Integral parts
leprofece
Messages
239
Reaction score
0
integral is exsqrt(x)
ok here u = sqrt(x) du = 1/(2sqrt(x))
dv ex= v= ex
so exsqrt(x) - integral( 1/2sqrt(x)ex)
And I can't continue because i can not get rid of ex??
How must I proceed??
 
Physics news on Phys.org
It doesn't have an antiderivative in terms of the elementary functions. Apparently you need to use the imaginary error function.
 
Hello, leprofece!

$\int e^{\sqrt{x}}dx$
Let $w \,=\,\sqrt{x} \quad\Rightarrow\quad x \,=\,w^2 \quad\Rightarrow\quad dx \,=\,2w\,dw$

Substitute: $\displaystyle\;\;\int e^w(2w\,dw) \;=\;2\int we^w\,dw$

By parts: $\;\begin{Bmatrix}u &=& w && dv &=& e^wdw \\ du &=& dw && v &=& e^w\end{Bmatrix}$

We have: $\displaystyle\;2\left(we^w - \int e^wdx\right)$

. . . . . $=\;2(we^w - e^w) + C \;=\;2e^w(w-1) + C$Back-substitute: $\;2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$
 
soroban said:
Hello, leprofece!


Let $w \,=\,\sqrt{x} \quad\Rightarrow\quad x \,=\,w^2 \quad\Rightarrow\quad dx \,=\,2w\,dw$

Substitute: $\displaystyle\;\;\int e^w(2w\,dw) \;=\;2\int we^w\,dw$

By parts: $\;\begin{Bmatrix}u &=& w && dv &=& e^wdw \\ du &=& dw && v &=& e^w\end{Bmatrix}$

We have: $\displaystyle\;2\left(we^w - \int e^wdx\right)$

. . . . . $=\;2(we^w - e^w) + C \;=\;2e^w(w-1) + C$Back-substitute: $\;2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$

None of this post is relevant, as it is NOT the function to be integrated, nor is this integral a result of the integration by parts.

The integral to be computed is actually $\displaystyle \begin{align*} \int{ \sqrt{x}\,\mathrm{e}^x\,\mathrm{d}x } \end{align*}$
 
leprofece said:
integral is exsqrt(x)
ok here u = sqrt(x) du = 1/(2sqrt(x))
dv ex= v= ex
so exsqrt(x) - integral( 1/2sqrt(x)ex)
And I can't continue because i can not get rid of ex??
How must I proceed??

You can proceed by parts...

$\displaystyle \int \sqrt{x}\ e^{x}\ dx = \frac{2}{3}\ x^{\frac{2}{3}}\ e^{x} - \frac{4}{15}\ x^{\frac{5}{2}}\ e^{x} + \frac{8}{105}\ x^{\frac{7}{2}}\ e^{x} - ... + (-1)^{n+1} \sqrt{x}\ e^{x}\ \frac{(2\ x)^{n}}{(2\ n + 1)!}\ + ...\ (1) $

Now You can use the nice series expansion...

$\displaystyle \sum_{n=0}^{\infty} \frac{t^{n}}{(2\ n +1)!} = \sqrt{\frac{\pi}{2\ t}} \ e^{\frac{t}{2}}\ \text{erf}\ (\sqrt{\frac{t}{2}})\ (2) $

... to arrive at...

$\displaystyle \int \sqrt{x}\ e^{x}\ dx = \sqrt{x}\ e^{x} - \frac{1}{2\ i}\ \sqrt{\frac{\pi}{x}}\ \text{erf}\ (i\ \sqrt{x}) + c\ (3)$

Kind regards

$\chi$ $\sigma$
 
Alternatively, you could apply the Exponential Integral function $$\text{Ei}(x)$$ defined below:
$$\text{Ei}(x) = \int \frac{e^x}{x}\, dx = \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!}$$

$$\text{Ei}'(x) = \frac{d}{dx}\text{Ei}(x) = \frac{d}{dx}\, \int \frac{e^x}{x}\, dx = \frac{e^x}{x} $$Hence$$\int e^x\sqrt{x}\, dx = \int x^{3/2} \frac{e^x}{x}\, dx = \int x^{3/2} \left[ \frac{d}{dx} \text{Ei}(x) \right]\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \text{Ei}(x)\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \Bigg\{ \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!} \Bigg\} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + \frac{3}{2}\, \sum_{k=1}^{\infty}\frac{1}{k\cdot k!} \int x^{k+1/2} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} $$Finally, assuming that $$x > 0$$, we can drop the absolute value sign in the logarithm.

$$\int \sqrt{x}\log x\, dx = \frac{2 x\sqrt{x}}{3}\, \log x - \frac{4 x\sqrt{x}}{9}$$Hence$$\int e^x\sqrt{x}\, dx =$$$$x\sqrt{x}\,\text{Ei}(x) - x\sqrt{x}\log x + \frac{2x\sqrt{x}}{3} + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} =
$$$$x\sqrt{x}\, \left[ \text{Ei}(x) - \log x + \frac{2}{3} + 3\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} \right]
$$
 
DreamWeaver said:
Alternatively, you could apply the Exponential Integral function $$\text{Ei}(x)$$ defined below:
$$\text{Ei}(x) = \int \frac{e^x}{x}\, dx = \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!}$$

$$\text{Ei}'(x) = \frac{d}{dx}\text{Ei}(x) = \frac{d}{dx}\, \int \frac{e^x}{x}\, dx = \frac{e^x}{x} $$Hence$$\int e^x\sqrt{x}\, dx = \int x^{3/2} \frac{e^x}{x}\, dx = \int x^{3/2} \left[ \frac{d}{dx} \text{Ei}(x) \right]\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \text{Ei}(x)\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \Bigg\{ \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!} \Bigg\} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + \frac{3}{2}\, \sum_{k=1}^{\infty}\frac{1}{k\cdot k!} \int x^{k+1/2} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} $$Finally, assuming that $$x > 0$$, we can drop the absolute value sign in the logarithm.

$$\int \sqrt{x}\log x\, dx = \frac{2 x\sqrt{x}}{3}\, \log x - \frac{4 x\sqrt{x}}{9}$$Hence$$\int e^x\sqrt{x}\, dx =$$$$x\sqrt{x}\,\text{Ei}(x) - x\sqrt{x}\log x + \frac{2x\sqrt{x}}{3} + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} =
$$$$x\sqrt{x}\, \left[ \text{Ei}(x) - \log x + \frac{2}{3} + 3\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} \right]
$$

Thank for your answer but you must solve it by normal or traditional methods students have not studied series yet
Could anybody do that way??
 
leprofece said:
Thank for your answer but you must solve it by normal or traditional methods students have not studied series yet
Could anybody do that way??

Hello, Leprofece! (Sun)

It sounds to me like they've asked you to solve a problem that isn't solvable (with what they've taught you so far). A possible case of "Bad teacher!", I think... :rolleyes:
 
Back
Top