Solve Integral by Parts: exsqrt(x)

  • Context: MHB 
  • Thread starter Thread starter leprofece
  • Start date Start date
  • Tags Tags
    Integral parts
Click For Summary

Discussion Overview

The discussion revolves around the integral of the function \( e^{\sqrt{x}} \) or \( e^x \sqrt{x} \), exploring methods for solving it, including integration by parts, series expansions, and the Exponential Integral function. Participants share various approaches and express concerns about the applicability of certain methods based on the audience's knowledge level.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Homework-related

Main Points Raised

  • One participant attempts integration by parts but struggles to proceed due to the presence of \( e^x \).
  • Another participant claims that the integral does not have an antiderivative in terms of elementary functions and suggests using the imaginary error function.
  • Several participants propose a substitution method, transforming the integral into a form that can be solved using integration by parts, leading to a result expressed in terms of \( e^{\sqrt{x}} \).
  • Another participant suggests using the Exponential Integral function, providing a detailed derivation involving logarithmic terms and series expansions.
  • Some participants express concern that the methods involving series expansions may not be suitable for students who have not yet studied such techniques, asking for traditional methods instead.
  • A later reply questions the appropriateness of the problem being assigned, suggesting it may be beyond the students' current curriculum.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method to solve the integral, with multiple competing views on the applicability of advanced techniques versus traditional methods. The discussion remains unresolved regarding the most suitable approach for students.

Contextual Notes

Some participants note that the integral may not be solvable using methods familiar to students, indicating a potential mismatch between the problem and the students' current knowledge base.

leprofece
Messages
239
Reaction score
0
integral is exsqrt(x)
ok here u = sqrt(x) du = 1/(2sqrt(x))
dv ex= v= ex
so exsqrt(x) - integral( 1/2sqrt(x)ex)
And I can't continue because i can not get rid of ex??
How must I proceed??
 
Physics news on Phys.org
It doesn't have an antiderivative in terms of the elementary functions. Apparently you need to use the imaginary error function.
 
Hello, leprofece!

$\int e^{\sqrt{x}}dx$
Let $w \,=\,\sqrt{x} \quad\Rightarrow\quad x \,=\,w^2 \quad\Rightarrow\quad dx \,=\,2w\,dw$

Substitute: $\displaystyle\;\;\int e^w(2w\,dw) \;=\;2\int we^w\,dw$

By parts: $\;\begin{Bmatrix}u &=& w && dv &=& e^wdw \\ du &=& dw && v &=& e^w\end{Bmatrix}$

We have: $\displaystyle\;2\left(we^w - \int e^wdx\right)$

. . . . . $=\;2(we^w - e^w) + C \;=\;2e^w(w-1) + C$Back-substitute: $\;2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$
 
soroban said:
Hello, leprofece!


Let $w \,=\,\sqrt{x} \quad\Rightarrow\quad x \,=\,w^2 \quad\Rightarrow\quad dx \,=\,2w\,dw$

Substitute: $\displaystyle\;\;\int e^w(2w\,dw) \;=\;2\int we^w\,dw$

By parts: $\;\begin{Bmatrix}u &=& w && dv &=& e^wdw \\ du &=& dw && v &=& e^w\end{Bmatrix}$

We have: $\displaystyle\;2\left(we^w - \int e^wdx\right)$

. . . . . $=\;2(we^w - e^w) + C \;=\;2e^w(w-1) + C$Back-substitute: $\;2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$

None of this post is relevant, as it is NOT the function to be integrated, nor is this integral a result of the integration by parts.

The integral to be computed is actually $\displaystyle \begin{align*} \int{ \sqrt{x}\,\mathrm{e}^x\,\mathrm{d}x } \end{align*}$
 
leprofece said:
integral is exsqrt(x)
ok here u = sqrt(x) du = 1/(2sqrt(x))
dv ex= v= ex
so exsqrt(x) - integral( 1/2sqrt(x)ex)
And I can't continue because i can not get rid of ex??
How must I proceed??

You can proceed by parts...

$\displaystyle \int \sqrt{x}\ e^{x}\ dx = \frac{2}{3}\ x^{\frac{2}{3}}\ e^{x} - \frac{4}{15}\ x^{\frac{5}{2}}\ e^{x} + \frac{8}{105}\ x^{\frac{7}{2}}\ e^{x} - ... + (-1)^{n+1} \sqrt{x}\ e^{x}\ \frac{(2\ x)^{n}}{(2\ n + 1)!}\ + ...\ (1) $

Now You can use the nice series expansion...

$\displaystyle \sum_{n=0}^{\infty} \frac{t^{n}}{(2\ n +1)!} = \sqrt{\frac{\pi}{2\ t}} \ e^{\frac{t}{2}}\ \text{erf}\ (\sqrt{\frac{t}{2}})\ (2) $

... to arrive at...

$\displaystyle \int \sqrt{x}\ e^{x}\ dx = \sqrt{x}\ e^{x} - \frac{1}{2\ i}\ \sqrt{\frac{\pi}{x}}\ \text{erf}\ (i\ \sqrt{x}) + c\ (3)$

Kind regards

$\chi$ $\sigma$
 
Alternatively, you could apply the Exponential Integral function $$\text{Ei}(x)$$ defined below:
$$\text{Ei}(x) = \int \frac{e^x}{x}\, dx = \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!}$$

$$\text{Ei}'(x) = \frac{d}{dx}\text{Ei}(x) = \frac{d}{dx}\, \int \frac{e^x}{x}\, dx = \frac{e^x}{x} $$Hence$$\int e^x\sqrt{x}\, dx = \int x^{3/2} \frac{e^x}{x}\, dx = \int x^{3/2} \left[ \frac{d}{dx} \text{Ei}(x) \right]\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \text{Ei}(x)\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \Bigg\{ \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!} \Bigg\} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + \frac{3}{2}\, \sum_{k=1}^{\infty}\frac{1}{k\cdot k!} \int x^{k+1/2} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} $$Finally, assuming that $$x > 0$$, we can drop the absolute value sign in the logarithm.

$$\int \sqrt{x}\log x\, dx = \frac{2 x\sqrt{x}}{3}\, \log x - \frac{4 x\sqrt{x}}{9}$$Hence$$\int e^x\sqrt{x}\, dx =$$$$x\sqrt{x}\,\text{Ei}(x) - x\sqrt{x}\log x + \frac{2x\sqrt{x}}{3} + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} =
$$$$x\sqrt{x}\, \left[ \text{Ei}(x) - \log x + \frac{2}{3} + 3\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} \right]
$$
 
DreamWeaver said:
Alternatively, you could apply the Exponential Integral function $$\text{Ei}(x)$$ defined below:
$$\text{Ei}(x) = \int \frac{e^x}{x}\, dx = \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!}$$

$$\text{Ei}'(x) = \frac{d}{dx}\text{Ei}(x) = \frac{d}{dx}\, \int \frac{e^x}{x}\, dx = \frac{e^x}{x} $$Hence$$\int e^x\sqrt{x}\, dx = \int x^{3/2} \frac{e^x}{x}\, dx = \int x^{3/2} \left[ \frac{d}{dx} \text{Ei}(x) \right]\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \text{Ei}(x)\, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x}\, \Bigg\{ \log|x|+\sum_{k=1}^{\infty}\frac{x^k}{k\cdot k!} \Bigg\} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + \frac{3}{2}\, \sum_{k=1}^{\infty}\frac{1}{k\cdot k!} \int x^{k+1/2} \, dx = $$$$x\sqrt{x}\,\text{Ei}(x) - \frac{3}{2}\, \int \sqrt{x} \log|x|\, dx + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} $$Finally, assuming that $$x > 0$$, we can drop the absolute value sign in the logarithm.

$$\int \sqrt{x}\log x\, dx = \frac{2 x\sqrt{x}}{3}\, \log x - \frac{4 x\sqrt{x}}{9}$$Hence$$\int e^x\sqrt{x}\, dx =$$$$x\sqrt{x}\,\text{Ei}(x) - x\sqrt{x}\log x + \frac{2x\sqrt{x}}{3} + 3x\sqrt{x}\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} =
$$$$x\sqrt{x}\, \left[ \text{Ei}(x) - \log x + \frac{2}{3} + 3\, \sum_{k=1}^{\infty}\frac{x^k}{k(2k+3)\cdot k!} \right]
$$

Thank for your answer but you must solve it by normal or traditional methods students have not studied series yet
Could anybody do that way??
 
leprofece said:
Thank for your answer but you must solve it by normal or traditional methods students have not studied series yet
Could anybody do that way??

Hello, Leprofece! (Sun)

It sounds to me like they've asked you to solve a problem that isn't solvable (with what they've taught you so far). A possible case of "Bad teacher!", I think... :rolleyes:
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K