MHB Solve Integral of ln(x^2-1) with Ease: Step-by-Step Guide

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Integration Ln
Click For Summary
The integral of ln(x^2-1) presents challenges due to domain restrictions when applying logarithmic properties. A key error identified is the assumption that ln(x^2-1) can be split into ln(x-1) + ln(x+1) without considering their respective domains. The correct approach involves using integration by parts and partial fraction decomposition, ensuring that polynomial long division is performed first. Participants noted that the integration process must account for the full domain of ln(x^2-1) to arrive at the correct antiderivative. Understanding these nuances is crucial for successfully solving the integral.
Yankel
Messages
390
Reaction score
0
Hello all,

I am trying to solve this integral,

\[\int \ln(x^{2}-1) \, dx\]

but I get stuck no matter what I do, if I go for substitution or parts...

thanks
 
Physics news on Phys.org
Here's a hint: $x^2-1=(x+1)(x-1)$.
 
Ok, I tried your suggestion, and I did this, however, it is the wrong answer...

\[\int ln((x-1)(x+1))dx=\int (ln(x-1)+ln(x+1))dx=\]

\[=\int ln(x-1)dx+\int ln(x+1)dx=\]

\[\int ln(u)du+\int ln(t)dt=(x-1)ln(x-1)+(x+1)ln(x+1)-2x+C\]

The correct answer should be:

\[xln(x^{2}-1)-2x-ln\left | x-1 \right |+ln\left | x+1 \right |+C\]
 
Last edited:
Yankel said:
Ok, I tried your suggestion, and I did this, however, it is the wrong answer...

\[\int ln((x-1)(x+1))dx=\int (ln(x-1)+ln(x+1))dx=\]

\[=\int ln(x-1)dx+\int ln(x+1)dx=\]

\[\int ln(u)du+\int ln(t)dt=(x-1)ln(x-1)+(x+1)ln(x+1)-2x+C\]

The correct answer should be:

\[xln(x^{2}-1)-2x-ln\left | x-1 \right |+ln\left | x+1 \right |+C\]

I would approach it in the following manner: first apply integration by parts to get

\[\begin{aligned} \int \ln(x^2-1)\,dx &= x\ln(x^2-1) - \int\frac{2x^2}{x^2-1}\,dx\\ &= x\ln(x^2-1)-\int 2+\frac{2}{x^2-1}\,dx\end{aligned}\]

and then use the hint Ackbach gave you.

Can you take things from here? (Smile)
 
Integration by parts and then use the method of fractions ?

still, I am curious to know what I did wrong earlier...
 
Yankel said:
Integration by parts and then use the method of fractions ?

still, I am curious to know what I did wrong earlier...

The problem is in claiming that $\ln(x^2-1) = \ln(x-1)+\ln(x+1)$. The property $\ln(ab)=\ln(a)+\ln(b)$ can only be applied when $a>0$ and $b>0$! However, we see that the domain of $\ln(x^2-1)$ is $(-\infty,-1)\cup(1,\infty)$ but the domain of $\ln(x-1)+\ln(x+1)$ is $(1,\infty)$, so we see now that they're not necessarily the "same function"; it's just a portion of $\ln(x^2-1)$. In fact,

\[\ln(x^2-1) = \begin{cases} \ln(x-1)+\ln(x+1) & x>1\\ \ln(1-x) + \ln(-x-1)& x<-1\end{cases}\]

In essence, what you found was $\displaystyle\int \ln(x^2-1)\,dx$ under the constraint that $x>1$. You didn't find $\displaystyle\int \ln(x^2-1)\,dx$ such that it was defined for any $x\in(-\infty,-1)\cup(1,\infty)$. Approaching it by parts and then partial fractions will get you the antiderivative that the solution is looking for.

I hope this made sense (I'm rather tired, so I'm not sure my explanation/reasoning was good enough).
 
Thank you for your help, I understand my mistake.

I tried the way you suggested, and I got something very similar to the answer I look for, however one item is missing.

My solution is attached, my final answer is in bold. Underneath, in red, the real answer according to the book and maple.

I can't find my current mistake either...

View attachment 2025
 

Attachments

  • Capture.PNG
    Capture.PNG
    9.9 KB · Views: 140
Your mistake is in the partial fraction decomposition. It is not true that
$$ \frac{1}{2(x-1)}- \frac{1}{2(x+1)}= \frac{x^{2}}{(x-1)(x+1)}.$$
Just get the common denominator and check it out. Instead, you have
$$\frac{1}{2(x-1)}- \frac{1}{2(x+1)}= \frac{1}{(x-1)(x+1)}.$$
You have to perform polynomial long division first, as Chris mentioned, before you can do the partial fraction decomposition. Indeed, your equation $x^2=A(x+1)+B(x-1)$ should have clued you in that there was a problem: there are no $A$ and $B$ that can make the equation work, because on the LHS you have a quadratic, but no quadratic powers on the RHS.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
4
Views
3K
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
5
Views
2K