Solve Limit at Infinity Problem: Tips & Help

Click For Summary
SUMMARY

The limit problem discussed is $$\lim_{n\to \infty}\left(1+\frac{3n-1}{n^2+1}\right)^{2n+3}$$ which simplifies to $$e^6$$. The exponent $2n+3$ can be rewritten to facilitate the limit calculation. The left limit evaluates to $e^6$, while the right limit approaches 1, confirming the overall limit as $e^6$. The discussion highlights the importance of understanding the behavior of limits and exponents in calculus.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with exponential functions
  • Knowledge of L'Hôpital's Rule
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the application of L'Hôpital's Rule in limit problems
  • Learn about the properties of exponential functions and their limits
  • Explore advanced limit techniques, such as the Squeeze Theorem
  • Practice rewriting complex expressions for limit evaluation
USEFUL FOR

Students studying calculus, mathematics educators, and anyone looking to deepen their understanding of limit evaluations and exponential functions.

Alexstrasuz1
Messages
20
Reaction score
0
Hi, I've been doing limit problems, and just got to this problem and I can't solve it. I would love some tips; you don't have to solve my problem.
Screenshot by Lightshot
 
Physics news on Phys.org
What is the $2n+3$ doing? Your formatting is a bit weird. Is the limit
$$\lim_{n\to \infty}\left(1+\frac{3n-1}{n^2+1}\right)^{\!\!2n+3}?$$
 
Im supposed to get it to this lim(1+1/n)^n=e
 
I suggest the following:

Rewrite the exponent $2n+3$ as follows
$$\frac{(2n+3)(3n-1)}{3n-1} = \frac{6n^2+7n-3}{3n-1} = \frac{6(n^2+1)}{3n-1}+\frac{7n-9}{3n-1}$$

Then we can write the limit as
$$\displaystyle \left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{6(n^2+1)}{3n-1}}\right]\left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{7n-9}{3n-1}}\right]$$

The left limit is equal to $e^6$, the right limit is equal to $1$. Hence the solution is $e^6$.
 
I solved it by dividing fraction by n and got 3/n and then just did some standard work and got e6
 
Siron said:
$$\displaystyle \left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{6(n^2+1)}{3n-1}}\right]\left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{7n-9}{3n-1}}\right]$$

The left limit is equal to $e^6$, the right limit is equal to $1$. Hence the solution is $e^6$.
In regard to the second factor, I can intuitively understand what you did, but Mathematically I am lost. How did you know the limit of the second factor is 1?

-Dan
 
topsquark said:
In regard to the second factor, I can intuitively understand what you did, but Mathematically I am lost. How did you know the limit of the second factor is 1?

-Dan

As $n\to\infty$, the base goes to $1$ and the exponent goes to a finite value (7/3) so we have a determinate form of $1$. :D
 
Ah! The little details! Thanks. :)

-Dan
 
Hey I solved this on my way and today I showed it to my teacher and she said it isn't right way to solve it even I got the same result
I divided 3n-1/n^2+1 with n so I got 3/n and I wrote it as 1/n/3 and put that n/3=t where n=3t and I got in exponent 6t+3 and got that e^6.
 
  • #10
Alexstrasuz said:
Hey I solved this on my way and today I showed it to my teacher and she said it isn't right way to solve it even I got the same result
I divided 3n-1/n^2+1 with n so I got 3/n and I wrote it as 1/n/3 and put that n/3=t where n=3t and I got in exponent 6t+3 and got that e^6.

If I understand you correctly, you mean:
$$\frac{3n-1}{n^2+1} \frac{1}{n} = \frac{3}{n}?$$
The only thing you could do is to divide the numerator and denominator by $n$ but I don't see how that could lead to a solution.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K