MHB Solve Limit at Infinity Problem: Tips & Help

AI Thread Summary
The discussion focuses on solving the limit problem $$\lim_{n\to \infty}\left(1+\frac{3n-1}{n^2+1}\right)^{2n+3}$$ and finding that it equals $e^6$. Participants suggest rewriting the exponent and breaking the limit into two parts, with one limit approaching $e^6$ and the other approaching 1. There is some confusion regarding the steps taken to simplify the expression, particularly how the second factor's limit is determined to be 1. Despite achieving the same result, one participant's method is questioned by their teacher for not being mathematically rigorous. The conversation highlights the importance of understanding the underlying principles in limit calculations.
Alexstrasuz1
Messages
20
Reaction score
0
Hi, I've been doing limit problems, and just got to this problem and I can't solve it. I would love some tips; you don't have to solve my problem.
Screenshot by Lightshot
 
Mathematics news on Phys.org
What is the $2n+3$ doing? Your formatting is a bit weird. Is the limit
$$\lim_{n\to \infty}\left(1+\frac{3n-1}{n^2+1}\right)^{\!\!2n+3}?$$
 
Im supposed to get it to this lim(1+1/n)^n=e
 
I suggest the following:

Rewrite the exponent $2n+3$ as follows
$$\frac{(2n+3)(3n-1)}{3n-1} = \frac{6n^2+7n-3}{3n-1} = \frac{6(n^2+1)}{3n-1}+\frac{7n-9}{3n-1}$$

Then we can write the limit as
$$\displaystyle \left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{6(n^2+1)}{3n-1}}\right]\left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{7n-9}{3n-1}}\right]$$

The left limit is equal to $e^6$, the right limit is equal to $1$. Hence the solution is $e^6$.
 
I solved it by dividing fraction by n and got 3/n and then just did some standard work and got e6
 
Siron said:
$$\displaystyle \left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{6(n^2+1)}{3n-1}}\right]\left[\lim_{n \to \infty} \left(1+\frac{1}{\frac{n^2+1}{3n-1}}\right)^{\frac{7n-9}{3n-1}}\right]$$

The left limit is equal to $e^6$, the right limit is equal to $1$. Hence the solution is $e^6$.
In regard to the second factor, I can intuitively understand what you did, but Mathematically I am lost. How did you know the limit of the second factor is 1?

-Dan
 
topsquark said:
In regard to the second factor, I can intuitively understand what you did, but Mathematically I am lost. How did you know the limit of the second factor is 1?

-Dan

As $n\to\infty$, the base goes to $1$ and the exponent goes to a finite value (7/3) so we have a determinate form of $1$. :D
 
Ah! The little details! Thanks. :)

-Dan
 
Hey I solved this on my way and today I showed it to my teacher and she said it isn't right way to solve it even I got the same result
I divided 3n-1/n^2+1 with n so I got 3/n and I wrote it as 1/n/3 and put that n/3=t where n=3t and I got in exponent 6t+3 and got that e^6.
 
  • #10
Alexstrasuz said:
Hey I solved this on my way and today I showed it to my teacher and she said it isn't right way to solve it even I got the same result
I divided 3n-1/n^2+1 with n so I got 3/n and I wrote it as 1/n/3 and put that n/3=t where n=3t and I got in exponent 6t+3 and got that e^6.

If I understand you correctly, you mean:
$$\frac{3n-1}{n^2+1} \frac{1}{n} = \frac{3}{n}?$$
The only thing you could do is to divide the numerator and denominator by $n$ but I don't see how that could lead to a solution.
 
Back
Top