MHB Solve Limit w/o L'Hôpital: Miras Tussupov's Q on Yaoo Answers

Click For Summary
The limit as x approaches infinity for the expression ((3x-1)/(3x-4))^2x can be solved without L'Hôpital's rule by rewriting the fraction as 1 + (3/(3x-4)). This leads to the limit being expressed as (1 + (3/u))^(2/3)(u + 4) after substitution. By applying properties of limits and exponents, the limit can be separated into two parts, one of which evaluates to 1, and the other simplifies to (e^3)^(2/3). Ultimately, the limit is determined to be e^2.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve limit when x approaches infinity.?

How can I solve limit when x approaches infinity without using L'Hopital's rule?

lim(((3x-1)/(3x-4))^2x)

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Miras Tussupov,

We are given to evaluate:

$$L=\lim_{x\to\infty}\left(\left(\frac{3x-1}{3x-4} \right)^{2x} \right)$$

First, let's rewrite the innermost expression as follows:

$$\frac{3x-1}{3x-4}=\frac{3x-4+3}{3x-4}=1+\frac{3}{3x-4}$$

And now we have:

$$L=\lim_{x\to\infty}\left(\left(1+\frac{3}{3x-4} \right)^{2x} \right)$$

Next, let's use the substitution:

$$x=3x-4$$

to obtain:

$$L=\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{2}{3}(u+4)} \right)$$

Applying the properties of exponents, we may write:

$$L=\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{8}{3}}\cdot\left(1+\frac{3}{u} \right)^{\frac{2}{3}u} \right)$$

Applying the properties of limits, we may write:

$$L=\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{8}{3}} \right)\cdot\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{2}{3}u} \right)$$

The first limit is a determinate for and is equal to 1, and the second limit may be rewritten as:

$$L=\left(\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{u} \right) \right)^{\frac{2}{3}}$$

Using the well-known formula:

$$\lim_{x\to\infty}\left(\left(1+\frac{k}{x} \right)^x \right)=e^k$$

we now have:

$$L=\left(e^3 \right)^{\frac{2}{3}}=e^2$$

Hence, we may conclude:

$$\lim_{x\to\infty}\left(\left(\frac{3x-1}{3x-4} \right)^{2x} \right)=e^2$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K