MHB Solve Limit w/o L'Hôpital: Miras Tussupov's Q on Yaoo Answers

Click For Summary
SUMMARY

The limit as x approaches infinity for the expression \(\lim_{x\to\infty}\left(\left(\frac{3x-1}{3x-4} \right)^{2x} \right)\) is evaluated without using L'Hôpital's rule. The solution involves rewriting the expression to \(\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{8}{3}}\cdot\left(1+\frac{3}{u} \right)^{\frac{2}{3}u} \right)\). By applying the limit properties and the exponential limit formula, the final result is determined to be \(e^2\).

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with exponential functions
  • Knowledge of properties of limits and exponents
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the properties of limits in calculus
  • Learn about exponential growth and the natural exponential function
  • Explore alternative methods for evaluating limits without L'Hôpital's rule
  • Investigate the application of the binomial theorem in limits
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in advanced limit evaluation techniques without relying on L'Hôpital's rule.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve limit when x approaches infinity.?

How can I solve limit when x approaches infinity without using L'Hopital's rule?

lim(((3x-1)/(3x-4))^2x)

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello Miras Tussupov,

We are given to evaluate:

$$L=\lim_{x\to\infty}\left(\left(\frac{3x-1}{3x-4} \right)^{2x} \right)$$

First, let's rewrite the innermost expression as follows:

$$\frac{3x-1}{3x-4}=\frac{3x-4+3}{3x-4}=1+\frac{3}{3x-4}$$

And now we have:

$$L=\lim_{x\to\infty}\left(\left(1+\frac{3}{3x-4} \right)^{2x} \right)$$

Next, let's use the substitution:

$$x=3x-4$$

to obtain:

$$L=\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{2}{3}(u+4)} \right)$$

Applying the properties of exponents, we may write:

$$L=\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{8}{3}}\cdot\left(1+\frac{3}{u} \right)^{\frac{2}{3}u} \right)$$

Applying the properties of limits, we may write:

$$L=\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{8}{3}} \right)\cdot\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{\frac{2}{3}u} \right)$$

The first limit is a determinate for and is equal to 1, and the second limit may be rewritten as:

$$L=\left(\lim_{u\to\infty}\left(\left(1+\frac{3}{u} \right)^{u} \right) \right)^{\frac{2}{3}}$$

Using the well-known formula:

$$\lim_{x\to\infty}\left(\left(1+\frac{k}{x} \right)^x \right)=e^k$$

we now have:

$$L=\left(e^3 \right)^{\frac{2}{3}}=e^2$$

Hence, we may conclude:

$$\lim_{x\to\infty}\left(\left(\frac{3x-1}{3x-4} \right)^{2x} \right)=e^2$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K