MHB Solve $\sin(\alpha + \beta)$: Answer #41

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
The discussion focuses on solving the equation for $\sin(\alpha + \beta)$ using the sine addition formula, leading to the conclusion that $f(\alpha + \beta) = \frac{1 - 2\sqrt{6}}{6}$. The values of $\sin(\alpha)$ and $\cos(\beta)$ are derived from given graphs, resulting in $\sin(\alpha) = \frac{1}{2}$ and $\sin(\beta) = -\frac{2\sqrt{2}}{3}$. Additionally, a separate problem involving $\sin(2\theta) = \frac{1}{3}$ is introduced, with solutions in quadrants I and II, emphasizing the periodic nature of the sine function. The discussion concludes with a clarification on the use of $\arccos\left(\frac{1}{3}\right)$ to find the complementary angle to $\alpha$.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 7029

trying to do #41

\begin{align*}\displaystyle
\sin(\alpha + \beta)
&=\sin\alpha \cos \beta
+\cos \alpha \sin \beta\\
&=
\frac{1}{4}\cdot\frac{3}{1}
+\frac{\sqrt{15}}{4}\cdot \frac{\sqrt{10}}{3}
\end{align*}

ok the book answer to this was

$$f(\alpha + \beta)=\frac{1-2\sqrt{6}}{6}$$

but I couldn't derive this
 

Attachments

  • 8.3.41.PNG
    8.3.41.PNG
    6.3 KB · Views: 125
Mathematics news on Phys.org
From the graph on the left, we have:

$$2\sin(\alpha)=1\implies \sin(\alpha)=\frac{1}{2}$$-

Hence:

$$\cos(\alpha)=\sqrt{1-\left(\frac{1}{2}\right)^2}=\frac{\sqrt{3}}{2}$$

And from the graph on the right:

$$\cos(\beta)=\frac{1}{3}$$

Hence (observing the terminal side of the angle is in the 4th quadrant):

$$\sin(\beta)=-\sqrt{1-\left(\frac{1}{3}\right)^2}=-\frac{2\sqrt{2}}{3}$$

And so we find:

$$f(\alpha+\beta)=\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)=\frac{1}{2}\cdot\frac{1}{3}-\frac{\sqrt{3}}{2}\cdot\frac{2\sqrt{2}}{3}=\frac{1-2\sqrt{6}}{6}$$
 
ok I had r=4 not r=2

(Headbang)ok if I can sneak another one in here

$$\displaystyle\sin\left({2\theta}\right)= \frac{1}{3}$$
$$3\sin\left({2\theta}\right) = 1$$

then ?
 
karush said:
ok I had r=4 not r=2

(Headbang)ok if I can sneak another one in here

$$\displaystyle\sin\left({2\theta}\right)= \frac{1}{3}$$
$$3\sin\left({2\theta}\right) = 1$$

then ?

I'm assuming you are to solve for $\theta$...in which case I would observe that there are solutions in quadrant I and quadrant II, and they are symmetrical about $$\alpha=\frac{\pi}{2}$$, and we must keep the periodicity of the sine function in mind, hence:

$$2\theta=\left(\frac{\pi}{2}\pm\arccos\left(\frac{1}{3}\right)\right)+2k\pi$$ where $k\in\mathbb{Z}$

And so we have:

$$\theta=\frac{1}{2}\left(\frac{\pi}{2}\pm\arccos\left(\frac{1}{3}\right)\right)+k\pi=\frac{\pi}{4}(4k+1)\pm\frac{1}{2}\arccos\left(\frac{1}{3}\right)$$
 
why $\arccos\left(\frac{1}{3}\right)$ ?
 
karush said:
why $\arccos\left(\frac{1}{3}\right)$ ?

If we have:

$$\sin(\alpha)=\frac{1}{3}$$

But, we want the angle between the terminal side of $\alpha$ and $$\frac{\pi}{2}$$...that is we want the complementary angle to $\alpha$. :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
4
Views
2K
Replies
2
Views
6K
Replies
4
Views
1K
Replies
5
Views
3K
Replies
7
Views
1K
Replies
5
Views
2K
Replies
1
Views
2K
Back
Top