MHB Solve System of 2 Variables: $x^5+y^5=33,\,x+y=3$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    System Variables
AI Thread Summary
The system of equations $x^5+y^5=33$ and $x+y=3$ leads to two possible values for the product $xy$: either 2 or 7. The first case, where $xy=2$, yields real solutions $(x=1,y=2)$ and $(x=2,y=1)$. The second case, with $xy=7$, results in no real solutions. Additionally, complex solutions are identified as $x=(3+i\sqrt{19})/2$ and $y=(3-i\sqrt{19})/2$, along with their reverse. The discussion emphasizes both real and complex solutions to the original system.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the system $x^5+y^5=33,\,x+y=3$.
 
Mathematics news on Phys.org
[sp]$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=

=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :

x+y=3. (A)
xy=2

x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions[/sp]
 
Last edited:
Thanks for participating, solakis! Ah, the question is meant to ask for complex solutions too! (Nod)
 
solakis said:
[sp]$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=

=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :

x+y=3. (A)
xy=2

x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions[/sp]
[sp]The complex solutions are:
[x=(3+i$\sqrt 19$)/2, y=(3-i$\sqrt 19$)/2]...[x=(3-i$\sqrt 19$)/2 , y=( 3+i$\sqrt 19$)/2][/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top