MHB Solve System of 2 Variables: $x^5+y^5=33,\,x+y=3$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    System Variables
AI Thread Summary
The system of equations $x^5+y^5=33$ and $x+y=3$ leads to two possible values for the product $xy$: either 2 or 7. The first case, where $xy=2$, yields real solutions $(x=1,y=2)$ and $(x=2,y=1)$. The second case, with $xy=7$, results in no real solutions. Additionally, complex solutions are identified as $x=(3+i\sqrt{19})/2$ and $y=(3-i\sqrt{19})/2$, along with their reverse. The discussion emphasizes both real and complex solutions to the original system.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the system $x^5+y^5=33,\,x+y=3$.
 
Mathematics news on Phys.org
[sp]$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=

=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :

x+y=3. (A)
xy=2

x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions[/sp]
 
Last edited:
Thanks for participating, solakis! Ah, the question is meant to ask for complex solutions too! (Nod)
 
solakis said:
[sp]$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=

=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :

x+y=3. (A)
xy=2

x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions[/sp]
[sp]The complex solutions are:
[x=(3+i$\sqrt 19$)/2, y=(3-i$\sqrt 19$)/2]...[x=(3-i$\sqrt 19$)/2 , y=( 3+i$\sqrt 19$)/2][/sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top