MHB Solve System of Equations: 4x^2+25y^2+9z^2-10xy-15yz-6xz=0

AI Thread Summary
The discussion focuses on solving the system of equations defined by the quadratic equation 4x^2 + 25y^2 + 9z^2 - 10xy - 15yz - 6xz = 0 and the linear equation x + y + z = 5. Participants emphasize the complexity of finding solutions to this system, noting that it may have limited or no solutions. The quadratic equation suggests a conic section, which complicates the solution process. Ultimately, the consensus is that no other solutions exist beyond the ones identified. The thread concludes with the assertion that the system is solvable under specific conditions.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$
 
Mathematics news on Phys.org
kaliprasad said:
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$
my solution:
rearrange (1) we have :
$2x(2x-5y)+5y(5y-3z)+3z(3z-2x)=0--(3)$
for any $2x=5y=3z, (3)$ will be zero
so we have :$x:y:z=15:6:10---(4)$
from $(2)$ we have :$x=\dfrac{75}{31},y=\dfrac{30}{31},z=\dfrac{50}{31}$
 
Albert said:
my solution:
rearrange (1) we have :
$2x(2x-5y)+5y(5y-3z)+3z(3z-2x)=0--(3)$
for any $2x=5y=3z, (3)$ will be zero
so we have :$x:y:z=15:6:10---(4)$
from $(2)$ we have :$x=\dfrac{75}{31},y=\dfrac{30}{31},z=\dfrac{50}{31}$

Above is a right solution. kindly find other solutions or prove that no other solution exists
 
kaliprasad said:
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$
no other solution exists
$(1)\times 2$ we have:
$8x^2+50y^2+18z^2-20xy-30yz-12zx=0$
or $(2x-5y)^2+(5y-3z)^2+(3z-2x)^2=0$
$\therefore 2x=5y=3z$ must hold
 
kaliprasad said:
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$

The first equation is a quadric.
The first step is to analyze it and categorize it.
Let:
$$A = \begin{bmatrix}4& -5 & -3 \\ -5 & 25 & -15/2 \\ -3 & -15/2 & 9 \end{bmatrix}$$
Then (1) can be written as:
$$\mathbf x^T A \mathbf x = 0$$

$A$ is a real symmetric matrix, meaning it is diagonalizable with real eigenvalues and an orthonormal set of eigenvectors.
Its characteristic equation is:
$$\lambda^3 - 38\lambda^2 + \frac{1083}{4}\lambda = 0$$
This implies we have eigenvalues $\lambda_1 = 0$, and $\lambda_2, \lambda_3 > 0$.
So:
$$\mathbf x^T A \mathbf x = \mathbf x^T B^T \begin{bmatrix}0& 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} B \mathbf x = 0$$
where $B$ is an orthogonal matrix formed by the corresponding eigenvectors.

Consequently, we're looking at a degenerate quadric that is similar to:
$$\lambda_2 (y')^2 + \lambda_3 (z')^2 = 0$$
This is a line through the origin, since $\lambda_2, \lambda_3 > 0$.

The direction of the line is given by the eigenvector for $0$, and the line is also the kernel of $A$.
Solving $A\mathbf x=0$, we find:
$$\mathbf x = t\begin{pmatrix}15 \\ 6\\ 10\end{pmatrix}$$

Combining with (2) tells us that:
$$x=\frac{75}{31},y=\frac{30}{31},z=\frac{50}{31}$$

Just like Albert found. ;)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
22
Views
4K
Replies
3
Views
5K
Replies
3
Views
2K
Replies
4
Views
1K
Replies
7
Views
1K
Back
Top