MHB Solve System of Equations: 4x^2+25y^2+9z^2-10xy-15yz-6xz=0

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$
 
Mathematics news on Phys.org
kaliprasad said:
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$
my solution:
rearrange (1) we have :
$2x(2x-5y)+5y(5y-3z)+3z(3z-2x)=0--(3)$
for any $2x=5y=3z, (3)$ will be zero
so we have :$x:y:z=15:6:10---(4)$
from $(2)$ we have :$x=\dfrac{75}{31},y=\dfrac{30}{31},z=\dfrac{50}{31}$
 
Albert said:
my solution:
rearrange (1) we have :
$2x(2x-5y)+5y(5y-3z)+3z(3z-2x)=0--(3)$
for any $2x=5y=3z, (3)$ will be zero
so we have :$x:y:z=15:6:10---(4)$
from $(2)$ we have :$x=\dfrac{75}{31},y=\dfrac{30}{31},z=\dfrac{50}{31}$

Above is a right solution. kindly find other solutions or prove that no other solution exists
 
kaliprasad said:
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$
no other solution exists
$(1)\times 2$ we have:
$8x^2+50y^2+18z^2-20xy-30yz-12zx=0$
or $(2x-5y)^2+(5y-3z)^2+(3z-2x)^2=0$
$\therefore 2x=5y=3z$ must hold
 
kaliprasad said:
Solve the system of equations
$4x^2+25y^2 +9z^2 - 10xy -15yz - 6xz = 0\cdots(1)$
$x+y+z=5\cdots(2)$

The first equation is a quadric.
The first step is to analyze it and categorize it.
Let:
$$A = \begin{bmatrix}4& -5 & -3 \\ -5 & 25 & -15/2 \\ -3 & -15/2 & 9 \end{bmatrix}$$
Then (1) can be written as:
$$\mathbf x^T A \mathbf x = 0$$

$A$ is a real symmetric matrix, meaning it is diagonalizable with real eigenvalues and an orthonormal set of eigenvectors.
Its characteristic equation is:
$$\lambda^3 - 38\lambda^2 + \frac{1083}{4}\lambda = 0$$
This implies we have eigenvalues $\lambda_1 = 0$, and $\lambda_2, \lambda_3 > 0$.
So:
$$\mathbf x^T A \mathbf x = \mathbf x^T B^T \begin{bmatrix}0& 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} B \mathbf x = 0$$
where $B$ is an orthogonal matrix formed by the corresponding eigenvectors.

Consequently, we're looking at a degenerate quadric that is similar to:
$$\lambda_2 (y')^2 + \lambda_3 (z')^2 = 0$$
This is a line through the origin, since $\lambda_2, \lambda_3 > 0$.

The direction of the line is given by the eigenvector for $0$, and the line is also the kernel of $A$.
Solving $A\mathbf x=0$, we find:
$$\mathbf x = t\begin{pmatrix}15 \\ 6\\ 10\end{pmatrix}$$

Combining with (2) tells us that:
$$x=\frac{75}{31},y=\frac{30}{31},z=\frac{50}{31}$$

Just like Albert found. ;)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
22
Views
4K
Replies
3
Views
5K
Replies
3
Views
2K
Replies
4
Views
1K
Replies
7
Views
1K
Back
Top