juantheron
- 243
- 1
Solve the following system of equations in real numbers:$\sqrt{x^2-2x+6}\cdot \log_{3}(6-y) =x$$\sqrt{y^2-2y+6}\cdot \log_{3}(6-z)=y$$\sqrt{z^2-2z+6}\cdot\log_{3}(6-x)=z .$
Due to the symmetry, I assume that x = y = z.\text{Solve the following system of equations in real numbers:}
. . \begin{array}{ccc}\sqrt{x^2-2x+6}\cdot \log_{3}(6-y) &=&x \\<br /> \sqrt{y^2-2y+6}\cdot \log_{3}(6-z) &=& y \\<br /> \sqrt{z^2-2z+6}\cdot\log_{3}(6-x)&=&z\end{array}
Symmetry only guarantees that any permutation of the values of x, y, z for a solution is also a solution.soroban said:Hello, jacks!
I agree with pickslides . . .
Due to the symmetry, I assume that x = y = z.
Then we have: .\sqrt{x^2-2x+6}\cdot \log_3(6-x) \:=\:x
By inspection, we see that: .x\,=\,3.