Solve System Using Matrix Inverse

Click For Summary
SUMMARY

The discussion focuses on solving a system of equations using the inverse of a matrix. The matrix provided is [[0, -2, 2], [3, 1, 3], [1, -3, 1]], and the solution involves applying row operations to transform this matrix into the identity matrix while simultaneously applying the same operations to the identity matrix. The final inverse matrix calculated is [[0, 3/10, 3/10], [0, 1/10, -1/10], [1/2, 1/10, 4/10]], confirming the correctness of the operations performed.

PREREQUISITES
  • Matrix algebra fundamentals
  • Understanding of row operations
  • Familiarity with identity matrices
  • Basic knowledge of matrix inverses
NEXT STEPS
  • Study the method of Gaussian elimination for matrix inversion
  • Learn about the applications of matrix inverses in solving linear equations
  • Explore numerical methods for calculating matrix inverses
  • Investigate the properties of determinants in relation to matrix invertibility
USEFUL FOR

Students, educators, and professionals in mathematics, engineering, and computer science who are interested in linear algebra and solving systems of equations using matrix methods.

brinlin
Messages
12
Reaction score
0
Pre9.PNG
 
Physics news on Phys.org
$
\begin{bmatrix}
0 &-2 &2 \\
3 & 1 &3 \\
1 &-2 &3
\end{bmatrix} \cdot\begin{bmatrix}
x\\
y\\
z
\end{bmatrix}=\begin{bmatrix}
12\\
-2\\
8
\end{bmatrix}$

follow the directions for (b) and (c)
 
There are many ways to find an inverse matrix. One I like
write the matrix and identity matrix next to each other:
[math]\begin{bmatrix}0 & -2 & 2 \\ 3 & 1 & 3 \\ 1 & -3 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}[/math].

Now use "row operations" to reduce the matrix to the identity matrix while applying the same row operation to the identity matrix.

Normally the first thing you would do is divide every number in the first row by the leftmost number in that row. But here, that is 0 so instead swap the first and third rows:
[math]\begin{bmatrix}1 & -3 & 1 \\ 3 & 1 & 3 \\ 0 & -2 & 2 \end{bmatrix}\begin{bmatrix}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{bmatrix}[/math]

Now there is already a 1 in the upper left so all we need to do to get the right first column is subtract 3 times the first row from the second row:
[math]\begin{bmatrix}1 & -3 & 1 \\ 0 & 10 & 0 \\ 0 & -2 & 2 \end{bmatrix}\begin{bmatrix}0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}[/math]

Divide the second row by 10:
[math]\begin{bmatrix}1 & -3 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{bmatrix}\begin{bmatrix}0 & 0 & 1 \\ 0 & \frac{1}{10} & -\frac{1}{10} \\ 1 & 0 & 0 \end{bmatrix}[/math].

Add 3 times the second row to the first row and add 2 times the second row to the third row:
[math]\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix}0 & \frac{3}{10} & \frac{7}{10} \\ 0 & \frac{1}{10} & -\frac{1}{10} \\ 1 & \frac{2}{10} & \frac{8}{10} \end{bmatrix}[/math]

Divide the third row by 2:
[math]\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}0 & \frac{3}{10} & \frac{7}{10} \\ 0 & \frac{1}{10} & -\frac{1}{10} \\ \frac{1}{2} & \frac{1}{10} & \frac{4}{10} \end{bmatrix}[/math].

Finally, subtract the third row from the first row:
[math]\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}0 & \frac{3}{10} & \frac{3}{10} \\ 0 & \frac{1}{10} & -\frac{1}{10} \\ \frac{1}{2} & \frac{1}{10} & \frac{4}{10} \end{bmatrix}[/math]

IF I have done everything correctly, [math] \begin{bmatrix}0 & \frac{3}{10} & \frac{3}{10} \\ 0 & \frac{1}{10} & -\frac{1}{10} \\ \frac{1}{2} & \frac{1}{10} & \frac{4}{10} \end{bmatrix}[/math] is the inverse matrix to [math]\begin{bmatrix}0 & -2 & 2 \\ 3 & 1 & 3 \\ 1 & -3 & 1 \end{bmatrix}[/math]
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K