Solve the BEASTly Trapezoids Puzzle: Find the 4 Heights

  • Context: MHB 
  • Thread starter Thread starter Wilmer
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion centers on solving the BEASTly Trapezoids Puzzle involving four isosceles trapezoids inscribed in a circle with a radius of 725 and a shorter parallel side length of 666. The heights of the trapezoids, along with the lengths of the other parallel sides and equal sides, must be integers. Through the application of the identity for sums of squares and the Pythagorean theorem, the heights were determined to be 144, 280, 1008, and 1144, correcting earlier miscalculations regarding integer conditions for the trapezoid sides.

PREREQUISITES
  • Understanding of isosceles trapezoids and their properties
  • Familiarity with the Pythagorean theorem
  • Knowledge of sums of squares and related identities
  • Basic geometry involving circles and inscribed shapes
NEXT STEPS
  • Study the application of the sums of squares identity in geometry
  • Explore advanced properties of isosceles trapezoids
  • Learn about integer solutions in geometric contexts
  • Investigate the implications of inscribed shapes in circles
USEFUL FOR

Mathematicians, geometry enthusiasts, and educators looking to deepen their understanding of trapezoidal properties and integer solutions in geometric puzzles.

Wilmer
Messages
303
Reaction score
0
A circle radius = 725 contains 4 isosceles
trapezoids, length of shorter parallel sides = 666.

Heights, other parallel sides, and equal sides are all integers.

What are the 4 heights?
 
Mathematics news on Phys.org
Wilmer said:
A circle radius = 725 contains 4 isosceles
trapezoids, length of shorter parallel sides = 666.

Heights, other parallel sides, and equal sides are all integers.

What are the 4 heights?
Best to start with a picture.The radius is 725, and AB = 666, so HB = 333 and by Pythagoras OH = 644. Let OK = $x$ and KC = $y$. Then $x^2+y^2=725^2$. So we need to find several ways to express $725^2$ as the sum of two squares. The way to do that is to use the identity $$(a^2+b^2)(c^2+d^2) = (ac+bd)(ad-bc) = (ac-bd)(ad+bc).$$ Applying that identity repeatedly to the fact that $$725^2 = 5^4\times 29^2 = (2^2+1^2)(2^2+1^2)(2^2+1^2)(2^2+1^2)(5^2+2^2)(5^2+2^2),$$ you find that $$ 725^2 = 725^2+0^2 = 720^2+85^2 = 715^2+120^2 = 696^2+203^2 = 644^2 + 333^2 = 627^2+364^2 = 580^2+435^2 = 525^2+500^2. $$

To find possible coordinates for the point C = $(x,y)$, we must have $y>333$ and $|x|<644$ (to ensure that AB is the shorter of the parallel sides). We also need BC to be an integer, which (from the triangle BLC) means that $(y-333)^2 + (644-x)^2 = \Box$, where $\Box$ means a square. Since $x^2+y^2 = 725^2$, that relation simplifies to $725^2-644x-333y = \Box.$

Checking through the possible values of $(x,y)$, namely $$ (\pm85,720),\ (\pm120,715),\ (\pm203,696),\ (\pm364,627),\ (\pm435,580),\ (\pm500,525),\ (\pm525,500),\ (\pm580,435),\ (\pm627,364), $$ you can verify that there are exactly four values of $x$ that satisfy $725^2-644x-333y = \Box.$ The corresponding heights are the numbers $644-x.$

The values of $x$ are $\pm525,\ \pm627$, and the heights are 17, 119, 1169, 1271.
 

Attachments

  • trap.png
    trap.png
    4.2 KB · Views: 94
Nope...with your 4, the 2 equal sides AD and BC are not integers.These are my 4 (height, AD/BC, CD, x):
144, 240, 1050, -500
1144, 1160, 1050, 500
280, 406, 1254, -364
1008, 1050, 1254, 364

Using your diagram:
AB = a, CD = b, height HK = h, OK = x, radius = r
I came up with this formula to derive:
r = SQRT(4x^2 + b^2) / 2 where x = (a^2 - b^2 + 4h^2) / (8h)

I don't know why you listed all the triangles you did;
we need triangle 333-644-725 for all cases;
then we need the triangles with a>333:
364-627-725, 435-580-725 and 500-525-725.
That's it, that's all: right?
 
Last edited:
Wilmer said:
Nope...with your 4, the 2 equal sides AD and BC are not integers.These are my 4 (height, AD/BC, CD, x):
144, 240, 1050, -500
1144, 1160, 1050, 500
280, 406, 1254, -364
1008, 1050, 1254, 364

Using your diagram:
AB = a, CD = b, height HK = h, OK = x, radius = r
I came up with this formula to derive:
r = SQRT(4x^2 + b^2) / 2 where x = (a^2 - b^2 + 4h^2) / (8h)

I don't know why you listed all the triangles you did;
we need triangle 333-644-725 for all cases;
then we need the triangles with a>333:
364-627-725, 435-580-725 and 500-525-725.
That's it, that's all: right?
Yes, you are right. My mistake was that I dropped a factor of 2 in the equation $725^2-644x-333y = \Box.$ It should have read $2(725^2-644x-333y) = \Box.$ I then get the values of $x$ to be $\pm364$ and $\pm500$, giving the heights as 144, 280, 1008, 1144.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
37K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K