Solve the given equation using the Lambert W function

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion focuses on solving the equation 7^x = 5x + 5 using the Lambert W function. The user outlines their approach, transforming the equation into a suitable form for applying the Lambert W function. They express the equation in terms of y and derive a logarithmic relationship to facilitate the solution. The conversation highlights the use of Newton's method for numerical evaluation of the Lambert W function values. Overall, the thread emphasizes the importance of understanding the transformation process and numerical methods for solving such equations.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Solve for ##x## given ##3^x=2x+2##
Relevant Equations
Lambert W Function
I just came across this...the beginning steps are pretty easy to follow...i need help on the highlighted part as indicated below;

1662986037811.png
From my own understanding, allow me to create my own question for insight purposes...

let us have;

##7^x=5x+5##

##\dfrac{1}{5}=(x+1)7^{-x}##

##\dfrac{1}{35}=(x+1)7^{(-x-1)}## this is clear...
then we desire our equation to be in the form;
##we^w##
then we shall have,

##-\dfrac{1}{35}=(-x-1)7^{(-x-1)}##

Let ##y=7^{(-x-1)}##

then ##\ln y=(-x-1)\ln 7##

##⇒e^{(-x-1)\ln 7}=y## then on substituting back on ##-\dfrac{1}{35}=(-x-1)7^{(-x-1)}## and multiplying both sides of the equation by ##\ln 7##

we get;

##(\ln 7)(-x-1)⋅ e^{(-x-1)\ln 7} = \dfrac {-\ln 7}{35}##

##(\ln 7)(-x-1)=W_0 \left[\frac{-\ln 7}{35}\right ]##

or
##(\ln 7)(-x-1)=W_{-1} \left[\frac{-\ln 7}{35}\right ]## how do we arrive at the required values from here? Is there a table?
 
Last edited:
Physics news on Phys.org
The values of Lambert W are numerically evaluated. I believe Newton's method should be a solid pick and wikipedia recommends it, as well. Otherwise, it looks like you have correctly followed the guide. I wouldn't worry too much about numerical values unless you needed to implement them.
 
  • Like
Likes jim mcnamara
I hear you. Thanks for your feedback. I may explore this in detail later on how they arrived at the numerical values. Newton's method handles this quite well.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...