Solve the given simultaneous equations

  • Thread starter Thread starter chwala
  • Start date Start date
AI Thread Summary
The discussion focuses on solving simultaneous equations involving variables x and y in relation to a constant a. The initial approach involves manipulating equations to derive that a^2 equals xy, leading to the conclusion that x and y can both equal a. However, participants emphasize the need for clearer explanations and step-by-step derivations to enhance understanding and avoid confusion. Suggestions include starting from fundamental equations and explicitly stating the origins of derived equations. Overall, the conversation highlights the importance of clarity in mathematical problem-solving.
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached.
Relevant Equations
simultaneous equations
1693398074047.png


In my approach,

##(x+y)^2=4a^2##

##x^2+y^2=4a^2-2xy##

and

...

##x^2+y^2=xy+a^2##

then,

##4a^2-2xy=xy+a^2##

##3a^2=3xy##

##a^2=xy##

##⇒x=a, y=a##

Bingo!! :cool:

Any other approach is welcome ...
 
Last edited:
Physics news on Phys.org
If you have a question, ask it, else why are you posting your work here?
 
  • Like
Likes DaveE and topsquark
chwala said:
Homework Statement: See attached.
Relevant Equations: simultaneous equations

View attachment 331233

In my approach,

##(x+y)^2=4a^2##

##x^2+y^2=4a^2-2xy##

##x^2+y^2=xy+a^2##

##4a^2-2xy=xy+a^2##

##3a^2=3xy##

##a^2=xy##

##⇒x=a, y=a##

Bingo!! :cool:
You need to show more steps and where they come from.

Where did you get ##x^2+y^2=xy+a^2## from? It's correct, but it comes out of nowhere in your solution method.

Your solution to ##a^2=xy## is not the most general. x = a, y = a is certainly a solution, but any ##y = a^2/x## will also do. You need to plug this back into one of the original equations to get an expression for x and y in terms of a.

If your purpose is to check your solution method, a couple of points to consider:
1. Make it clear where each line is coming from. Be specific.

2. Explicitly work out each line step by step. This makes it much easier for anyone (especially yourself) to check for errors.

3. Review your work as if you didn't write it. That way you will be able to see more easily where you may have skipped steps when writing out the solution. (This is an acquired skill.)

-Dan
 
topsquark said:
You need to show more steps and where they come from.

Where did you get ##x^2+y^2=xy+a^2## from? It's correct, but it comes out of nowhere in your solution method.

Your solution to ##a^2=xy## is not the most general. x = a, y = a is certainly a solution, but any ##y = a^2/x## will also do. You need to plug this back into one of the original equations to get an expression for x and y in terms of a.

If your purpose is to check your solution method, a couple of points to consider:
1. Make it clear where each line is coming from. Be specific.

2. Explicitly work out each line step by step. This makes it much easier for anyone (especially yourself) to check for errors.

3. Review your work as if you didn't write it. That way you will be able to see more easily where you may have skipped steps when writing out the solution. (This is an acquired skill.)

-Dan
Note that,

##x+y=2a##

from

##\dfrac{x^2+ax+y^2+ay}{xy+3a^2}=1##

we shall have,

##\dfrac{x^2+2a^2+y^2}{xy+3a^2}=1##

on cross -multiplication we get,##x^2+2a^2+y^2=xy+3a^2##

...

Cheers.
 
Last edited:
chwala said:
Note that,

##x+y=2a##

then,

##\dfrac{x^2+2a^2+y^2}{xy+3a^2}=1##

then,

##x^2+2a^2+y^2=xy+3a^2##

...

Cheers.
First, I know how to solve this one. I know where the equation in line 3 comes from. I was giving you advice about just writing down an equation with no explanation where it came from.

Second, you just repeated the mistake. Where does the second equation come from? There is no equation on this page that says ##xy + 3a^2 =## something, much less how you applied it to the first equation in this post to get there.

What I was saying is that you need to start with
##\dfrac{x}{y+a} + \dfrac{y}{x+a} = 1##

and derive ##x^2 + y^2 = xy + a^2##, or at least say that it comes from there.

For the most part your posts are clear enough. This one simply isn't.

-Dan
 
topsquark said:
First, I know how to solve this one. I know where the equation in line 3 comes from. I was giving you advice about just writing down an equation with no explanation where it came from.

Second, you just repeated the mistake. Where does the second equation come from? There is no equation on this page that says ##xy + 3a^2 =## something, much less how you applied it to the first equation in this post to get there.

What I was saying is that you need to start with
##\dfrac{x}{y+a} + \dfrac{y}{x+a} = 1##

and derive ##x^2 + y^2 = xy + a^2##, or at least say that it comes from there.

For the most part your posts are clear enough. This one simply isn't.

-Dan
@chwala :

Dan, a.k.a. @topsquark , makes some good points above.

I only disagree with his final statement. You do similarly confusing things in many of your threads.
 
chwala said:
Homework Statement: See attached.
Relevant Equations: simultaneous equations

View attachment 331233

In my approach,

##(x+y)^2=4a^2##

##x^2+y^2=4a^2-2xy##

and

...

##x^2+y^2=xy+a^2##

then,

##4a^2-2xy=xy+a^2##

##3a^2=3xy##

##a^2=xy##

##⇒x=a, y=a##

Bingo!! :cool:

Any other approach is welcome ...

If x + y = 2a and xy = a^2 then x and y are the roots of <br /> \begin{split}<br /> 0 &amp;= (z - x)(z - y) \\<br /> &amp;= z^2 - (x + y)z + xy \\<br /> &amp;= z^2 - 2az + a^2 \\<br /> &amp;= (z - a)^2.\end{split} Thus (x,y) = (a,a) is the only possibility.
 
Why not simply substitute ##y = 2a - x## into the first equation? That seems an obvious way to generate a quadratic in ##x##.
 
PeroK said:
Why not simply substitute ##y = 2a - x## into the first equation? That seems an obvious way to generate a quadratic in ##x##.
This looks interesting...nice one you end up with

...
##(x-a)(x-a)=0##

##x=a##.

Cheers!
 
Back
Top