Solve the given trigonometry equation

AI Thread Summary
The trigonometry equation discussed leads to the solution x = 4√3 through logarithmic manipulation and hyperbolic functions. The initial equation, ln(x + √(x²+1)) = 2ln(2 + √3), simplifies to x + √(x²+1) = (2 + √3)². Further calculations reveal that x can be expressed as (96 + 56√3) / (14 + 8√3), ultimately simplifying to 4√3. An alternative approach using the double angle formula confirms the same result, demonstrating the consistency of the solution.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Find the exact value given the equation;

##\sinh^{-1} x = 2\cosh^{-1} (2)##
Relevant Equations
Trigonometry
In my approach i have the following lines

##\ln (x + \sqrt{x^2+1}) = 2\ln (2+\sqrt 3)##

##\ln (x + \sqrt{x^2+1} = \ln (2+\sqrt 3)^2##

##⇒x+ \sqrt{x^2+1} =(2+\sqrt 3)^2##

##\sqrt{x^2+1}=-x +7+4\sqrt{3}##

##x^2+1 = x^2-14x-8\sqrt 3 x + 56\sqrt 3 +97##

##1 = -14x-8\sqrt 3 x + 56\sqrt 3 +97##

##14x+8\sqrt 3 x = 96+56\sqrt 3##

##(14+8\sqrt 3)x = 96+56\sqrt 3##

##x= \dfrac{96+56\sqrt 3}{14+8\sqrt 3} = \dfrac{1344-768\sqrt 3 +784\sqrt 3-1344}{196-192}= \dfrac{16\sqrt 3}{4}=4\sqrt 3##

Bingo ...any insight or alternative approach is welcome.
 
Physics news on Phys.org
Using the double angle formula looks easier:
$$x = \sinh(2\cosh^{-1}(2)) = 4\sinh(\cosh^{-1}(2)) = 4\sqrt{\cosh^2(\cosh^{-1}(2)) - 1} = 4\sqrt 3$$
 
  • Like
  • Informative
Likes chwala, MatinSAR and Orodruin
Apply sinh:
$$
x = \sinh(2\cosh^{-1}(2))
= 2\sinh(\cosh^{-1}(2)) \cosh(\cosh^{-1}(2))
= 4\sinh(\cosh^{-1}(2))
$$
Since ##\sinh = \sqrt{\cosh^2-1}##
$$
\sinh(\cosh^{-1}(2)) = \sqrt{4-1} = \sqrt 3
$$
anf therefore
$$
x = 4\sqrt 3
$$

Edit: Cross posted with @PeroK - at least we said exactly the same …
 
  • Informative
  • Like
Likes chwala and MatinSAR
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top