hyperbolic functions Definition and Topics - 9 Discussions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, just as the derivatives of sin(t) and cos(t) are cos(t) and –sin(t), the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t).
Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.
The basic hyperbolic functions are:
hyperbolic sine "sinh" (),
hyperbolic cosine "cosh" (),from which are derived:
hyperbolic tangent "tanh" (),
hyperbolic cosecant "csch" or "cosech" ()
hyperbolic secant "sech" (),
hyperbolic cotangent "coth" (),corresponding to the derived trigonometric functions.
The inverse hyperbolic functions are:
area hyperbolic sine "arsinh" (also denoted "sinh−1", "asinh" or sometimes "arcsinh")
area hyperbolic cosine "arcosh" (also denoted "cosh−1", "acosh" or sometimes "arccosh")
and so on.
The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.
In complex analysis, the hyperbolic functions arise as the imaginary parts of sine and cosine. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.
By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert. Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today. The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.

View More On Wikipedia.org
  1. B

    A Can this difficult Gaussian integral be done analytically?

    Here is a tough integral that I'm not quite sure how to do. It's the Gaussian average: $$ I = \int_{-\infty}^{\infty}dx\, \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}\sqrt{1+a^2 \sinh^2(b x)} $$ for ##0 < a < 1## and ##b > 0##. Obviously the integral can be done for ##a = 0## (or ##b=0##) and for...
  2. T

    B Problem solving with hyperbolic functions

    Mod note: Because his caps-lock key is stuck, it's OK for this post to be in all caps. FIRSTLY, MY LAPTOP'S CAPS LOCK IS BEHAVING REALLY WEIRD AND I HAVE NO CONTROL ON IT WHATSOEVER. SO SORRY FOR POSTING IN ALL CAPS/ALL SMALL LETTERS I HAVE RECENTLY LEARNED HYPERBOLIC FUNCTIONS. HOWEVER, I AM...
  3. J

    Analytic Integration of Function Containing the Exponential of an Exponential

    Homework Statement Can this function be integrated analytically? ##f=\exp \left(-\frac{e^{-2 \theta } \left(a \left(b^2 \left(e^{2 \theta }-1\right)^2 L^2+16\right)-32 \sqrt{a} e^{\theta }+16 e^{2 \theta }\right)}{b L^4}\right),## where ##a##, ##b## and ##L## are some real positive...
  4. G

    Limit of arccosh x - ln x as x -> infinity

    Homework Statement find the limit of arccoshx - ln x as x -> infinity Homework Equations ##arccosh x = \ln (x +\sqrt[]{x^2-1} )## The Attempt at a Solution ## \lim_{x \to \infty }(\ln (x + \sqrt{x^2-1} ) - \ln (x)) = \lim_{x \to \infty} \ln (\frac{x+\sqrt{x^2-1}}{x}) \ln (1 + \lim_{x \to...
  5. j3dwards

    Splitting function into odd and even parts

    Homework Statement Split the function f(x) = ex + πe−x into odd and even parts, and express your result in terms of cosh x and sinh x. Homework Equations f(x) = 0.5[f(x) + f(-x)] +0.5[f(x) - f(-x)] The Attempt at a Solution So i know that: ex = 0.5[ex - e-x] + 0.5[ex + e-x] = sinh(x) +...
  6. E

    What is the solution for the attached equation?

    Good afternoon, i was just wondering if this equation is possibly solvable where I(z) is a function of z. The equation is: I(z)=cosh(1/2 ∫I(z)dz) I know it looks stupid but is it possible? How would you approach this problem? Thank you.
  7. N

    Proof using hyperbolic trig functions and complex variables

    1. Given, x + yi = tan^-1 ((exp(a + bi)). Prove that tan(2x) = -cos(b) / sinh(a) Homework Equations I have derived. tan(x + yi) = i*tan(x)*tanh(y) / 1 - i*tan(x)*tanh(y) tan(2x) = 2tanx / 1 - tan^2 (x) Exp(a+bi) = exp(a) *(cos(b) + i*sin(b))[/B] 3. My attempt...
  8. E

    Hyperbolic partial differential equation

    What is the general solution of the following hyperbolic partial differential equation: The head (h) at a specified distance (x) is a sort of a damping function in the form: Where, a, b, c and d are constants. And the derivatives are with respect to t (time) and x (distance). Thanks in advance.
  9. Kyuutoryuu

    Are hyperbolic functions used in Calculus 3?

    More than just a few problems that happen to pop up in the textbook, I mean.
Top