Solve the given trigonometry problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Trigonometry
Click For Summary
SUMMARY

The forum discussion centers on solving the trigonometric equation involving the expressions ##\sin x + \sin y## and ##\cos x + \cos y##, equating them to a constant ##a##. Participants explore various approaches, ultimately confirming that ##\sin x + \cos x = \sqrt{2}## when ##a = \sqrt{2}##. The discussion highlights the importance of recognizing the exchangeability of ##x## and ##y## in the equations and the implications of squaring both sides of the equations. The range of values for ##a## is established as ##0 < |a| \leq \sqrt{2}## for real solutions.

PREREQUISITES
  • Understanding of trigonometric identities, particularly the sine and cosine addition formulas.
  • Familiarity with the properties of sine and cosine functions, including their ranges and periodicity.
  • Knowledge of algebraic manipulation techniques, including squaring both sides of an equation.
  • Basic comprehension of inverse trigonometric functions and their applications.
NEXT STEPS
  • Study the implications of the sine and cosine addition formulas in solving trigonometric equations.
  • Learn about the properties of inverse trigonometric functions, specifically ##\sin^{-1}## and ##\cos^{-1}##.
  • Explore the concept of squaring equations in trigonometry and the potential introduction of extraneous solutions.
  • Investigate the graphical representations of sine and cosine functions to visualize their behavior and intersections.
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking for insights into solving complex trigonometric equations and understanding their properties.

chwala
Gold Member
Messages
2,828
Reaction score
421
Homework Statement
See attached
Relevant Equations
Trigonometry
1667990729700.png


text solution here;

1667990926309.png

I was solving this today...got stuck and wanted to consult here...but i eventually found the solution...any insight/alternative approach is welcome...
My approach;

...
##\sin^2y+ cos^2 y= 2a^2-2a \sin x - 2a\cos x+1##

It follows that,##2a(\sin x + \cos x)=2a^2##

##\sin x+\cos x=a##

cheers.
 
  • Like
Likes   Reactions: neilparker62 and anuttarasammyak
Physics news on Phys.org
Good job :thumbup:

I would just add a short conjecture. x and y are exchangeable in the formula given and
\sin x+\sin y + \cos x + \cos y=2a
So we may guess
\sin x+\cos x = \sin y + \cos y=a
 
  • Like
Likes   Reactions: chwala and Lnewqban
chwala said:
sin⁡x+cos⁡x=a
By squaring
2 \sin x \cos x = a^2-1
Sox,y=\theta, \frac{\pi}{2}-\thetawhere
\theta= \frac{1}{2} \sin^{-1}(a^2-1)
 
  • Like
Likes   Reactions: SammyS
anuttarasammyak said:
By squaring 2 \sin x \cos x = a^2-1 Sox,y=\theta, \frac{\pi}{2}-\thetawhere \theta= \frac{1}{2} \sin^{-1}(a^2-1)
Your solution is quite interesting.

Of course, the problem stated in the OP only asked that ##\sin x +\sin y ## be given in terms of ##a## .

... but to pursue your solution further:

Since ##\displaystyle \sin 2x = a^2-1##, the range of values for ##a## is limited if there is to be any real solution for ##x##..
 
  • Like
Likes   Reactions: anuttarasammyak and chwala
I solve it in a different way.

1668054832135.png
I get ##\sin x+\cos x = \sqrt 2##. Can someone tell me where am I mistaken?
 
  • Like
Likes   Reactions: chwala and anuttarasammyak
brotherbobby said:
I solve it in a different way.

View attachment 316966I get ##\sin x+\cos x = \sqrt 2##. Can someone tell me where am I mistaken?
Mythoughts on this...

We know that

##\sin x + \sin y = 2 \sin \dfrac {x+y}{2} ⋅ \cos \dfrac {x-y}{2}=a##

and

##\cos x + \cos y =2 \cos \dfrac{x+y} {2}⋅\cos \dfrac {x-y}{2}=a##

##⇒4⋅\sin^2 \left[\dfrac{x+y}{2}\right] ⋅ cos^2 \left[\dfrac{x-y}{2}\right]=a^2##

##⇒4⋅\cos^2 \left[\dfrac{x+y}{2}\right] ⋅ cos^2 \left[\dfrac{x-y}{2}\right]=a^2##

on adding the two we end up with;

##cos^2 \left[\dfrac{x-y}{2}\right]\left(4⋅\sin^2 \left[\dfrac{x+y}{2}\right]+4⋅\cos^2 \left[\dfrac{x+y}{2}\right]\right)=2a^2##

##4⋅cos^2 \left[\dfrac{x-y}{2}\right]=2a^2##

##cos^2 \left[\dfrac{x-y}{2}\right]=\dfrac{2a^2}{4}##

##⇒cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##

Therefore on substituting back to our equation;

##2 \sin \dfrac {x+y}{2} ⋅ \cos \dfrac {x-y}{2}=a##

and

##2 \cos \dfrac{x+y} {2}⋅\cos \dfrac {x-y}{2}=a##

we get;

##2 \sin \dfrac {x+y}{2} ⋅ \dfrac{a}{\sqrt{2}}=a##

##2 \cos \dfrac{x+y} {2}⋅\dfrac{a}{\sqrt{2}}=a##

##⇒\sin \dfrac {x+y}{2}=\dfrac{\sqrt{2}}{2}##

##⇒\cos \dfrac {x+y}{2}=\dfrac{\sqrt{2}}{2}##

##⇒x+y=\dfrac{π}{2}##

Let ##x=y## then ##x=y=\dfrac{π}{4}##

##\sin x +\cos x=\sin \dfrac{π}{4} +\cos \dfrac{π}{4}=\sqrt{2}##

but;
##⇒\cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##

since ##x=y## then;

##1=\dfrac{a}{\sqrt{2}}##

##⇒a=\sqrt{2}##

Therefore;

##\sin x + \cos x= a##
 
Last edited:
SammyS said:
Since sin⁡2x=a2−1, the range of values for a is limited if there is to be any real solution for x..
For real x
0 &lt; |a| \leq \sqrt{2} as a ##\neq## 0 in the problem statement.
I wonder whether and why sign of a does not matter with the solution. So as another way without squaring,
\sqrt{2}\sin(x+\frac{\pi}{4})=a
x=\sin^{-1}\frac{a}{\sqrt{2}}-\frac{\pi}{4}
with y
x,y=\sin^{-1}\frac{a}{\sqrt{2}}-\frac{\pi}{4},-\sin^{-1}\frac{a}{\sqrt{2}}+\frac{3\pi}{4}
where sign of a matters.
 
Last edited:
brotherbobby said:
I solve it in a different way.

View attachment 316966I get ##\sin x+\cos x = \sqrt 2##. Can someone tell me where am I mistaken?
x-y=\pi
,which gives a=0 the prohibited value, does not have AND relation but OR relation with
x+y=\frac{\pi}{2}
,which allows a to be variable, in getting the solution.
 
Last edited:
  • Like
Likes   Reactions: chwala and SammyS
chwala said:
Mythoughts on this...

We know that

##\sin x + \sin y = 2 \sin \dfrac {x+y}{2} ⋅ \cos \dfrac {x-y}{2}=a##

and

##\cos x + \cos y =2 \cos \dfrac{x+y} {2}⋅\cos \dfrac {x-y}{2}=a##

##⇒4⋅\sin^2 \left[\dfrac{x+y}{2}\right] ⋅ cos^2 \left[\dfrac{x-y}{2}\right]=a^2##

##⇒4⋅\cos^2 \left[\dfrac{x+y}{2}\right] ⋅ cos^2 \left[\dfrac{x-y}{2}\right]=a^2##

on adding the two we end up with;

##cos^2 \left[\dfrac{x-y}{2}\right]\left(4⋅\sin^2 \left[\dfrac{x+y}{2}\right]+4⋅\cos^2 \left[\dfrac{x+y}{2}\right]\right)=2a^2##

##4⋅cos^2 \left[\dfrac{x-y}{2}\right]=2a^2##

##cos^2 \left[\dfrac{x-y}{2}\right]=\dfrac{2a^2}{4}##

##⇒cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##

Therefore on substituting back to our equation;

##2 \sin \dfrac {x+y}{2} ⋅ \cos \dfrac {x-y}{2}=a##

and

##2 \cos \dfrac{x+y} {2}⋅\cos \dfrac {x-y}{2}=a##

we get;

##2 \sin \dfrac {x+y}{2} ⋅ \dfrac{a}{\sqrt{2}}=a##

##2 \cos \dfrac{x+y} {2}⋅\dfrac{a}{\sqrt{2}}=a##

##⇒\sin \dfrac {x+y}{2}=\dfrac{\sqrt{2}}{2}##

##⇒\cos \dfrac {x+y}{2}=\dfrac{\sqrt{2}}{2}##

##⇒x+y=\dfrac{π}{2}##

Let ##x=y## then ##x=y=\dfrac{π}{4}##

##\sin x +\cos x=\sin \dfrac{π}{4} +\cos \dfrac{π}{4}=\sqrt{2}##

but;
##⇒\cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##

since ##x=y## then;

##1=\dfrac{a}{\sqrt{2}}##

##⇒a=\sqrt{2}##

Therefore;

##\sin x + \cos x= a##
That is fine, but where am I mistaken in my solution in post #5 above?

You get ##cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##.

But I get ##cos\left[\dfrac{x-y}{2}\right]=0##.

We are both using correct math. But one of us has got to be wrong.

I agree it looks like I am. I just want to know where.

I paste my solution again. Please let me know when you get the time.

1668173882058.png
 
  • #10
anuttarasammyak said:
View attachment 317015
Fine. Let us investigate  
x-y=\pi
a=\sin x+\sin y=\sin (\pi+y)+\sin y = -\sin y + \sin y =0
but the problem says ##a \neq 0##. So we should avoid it and go to another possibility that you wrote after OR in your last line. This was a repeat of post #8.
Correct. Please carry on.
 
  • #11
brotherbobby said:
That is fine, but where am I mistaken in my solution in post #5 above?

You get ##cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##.

But I get ##cos\left[\dfrac{x-y}{2}\right]=0##.

We are both using correct math. But one of us has got to be wrong.

I agree it looks like I am. I just want to know where.

I paste my solution again. Please let me know when you get the time.

View attachment 317014
You have $$\begin{align} & 2\sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)=a \nonumber \\ & 2\cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)=a \nonumber
\end{align}$$If you divide the top equation by the bottom, you get $$\tan\left(\frac{x+y}{2}\right)=1 \implies \frac{x+y}{2}=\frac{\pi}{4}.$$ Explore where that takes you.
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
5
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K