brotherbobby said:
I solve it in a different way.
View attachment 316966I get ##\sin x+\cos x = \sqrt 2##. Can someone tell me where am I mistaken?
Mythoughts on this...
We know that
##\sin x + \sin y = 2 \sin \dfrac {x+y}{2} ⋅ \cos \dfrac {x-y}{2}=a##
and
##\cos x + \cos y =2 \cos \dfrac{x+y} {2}⋅\cos \dfrac {x-y}{2}=a##
##⇒4⋅\sin^2 \left[\dfrac{x+y}{2}\right] ⋅ cos^2 \left[\dfrac{x-y}{2}\right]=a^2##
##⇒4⋅\cos^2 \left[\dfrac{x+y}{2}\right] ⋅ cos^2 \left[\dfrac{x-y}{2}\right]=a^2##
on adding the two we end up with;
##cos^2 \left[\dfrac{x-y}{2}\right]\left(4⋅\sin^2 \left[\dfrac{x+y}{2}\right]+4⋅\cos^2 \left[\dfrac{x+y}{2}\right]\right)=2a^2##
##4⋅cos^2 \left[\dfrac{x-y}{2}\right]=2a^2##
##cos^2 \left[\dfrac{x-y}{2}\right]=\dfrac{2a^2}{4}##
##⇒cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##
Therefore on substituting back to our equation;
##2 \sin \dfrac {x+y}{2} ⋅ \cos \dfrac {x-y}{2}=a##
and
##2 \cos \dfrac{x+y} {2}⋅\cos \dfrac {x-y}{2}=a##
we get;
##2 \sin \dfrac {x+y}{2} ⋅ \dfrac{a}{\sqrt{2}}=a##
##2 \cos \dfrac{x+y} {2}⋅\dfrac{a}{\sqrt{2}}=a##
##⇒\sin \dfrac {x+y}{2}=\dfrac{\sqrt{2}}{2}##
##⇒\cos \dfrac {x+y}{2}=\dfrac{\sqrt{2}}{2}##
##⇒x+y=\dfrac{π}{2}##
Let ##x=y## then ##x=y=\dfrac{π}{4}##
##\sin x +\cos x=\sin \dfrac{π}{4} +\cos \dfrac{π}{4}=\sqrt{2}##
but;
##⇒\cos\left[\dfrac{x-y}{2}\right]=\dfrac{a}{\sqrt{2}}##
since ##x=y## then;
##1=\dfrac{a}{\sqrt{2}}##
##⇒a=\sqrt{2}##
Therefore;
##\sin x + \cos x= a##