Solve the inequality and graph the solution a real number line

  • Context: MHB 
  • Thread starter Thread starter megacat8921
  • Start date Start date
  • Tags Tags
    Graph Inequality Line
Click For Summary

Discussion Overview

The discussion revolves around solving the inequality \( \frac{5}{x-1} - \frac{2x}{x+1} - 1 < 0 \). Participants explore various methods for solving this inequality, including algebraic manipulation and graphical representation on a real number line.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant asks how to solve the inequality, presenting it in its original form.
  • Another participant suggests multiplying by \( (x-1)^2(x+1)^2 \) to eliminate the fractions, emphasizing the importance of squaring to maintain positivity.
  • A third participant provides a common denominator and simplifies the expression to \( \frac{-3x^2+7x+6}{(x-1)(x+1)}<0 \), proposing to construct sign diagrams for both the numerator and denominator.
  • Further elaboration on the multiplication method is provided, with a detailed expansion and factoring of the left-hand side, leading to a factorization involving \( (x-1)(x+1) \) and a quadratic expression.
  • There is a question raised about the necessity of expanding and factoring, with a suggestion that common factors could be identified without full expansion.

Areas of Agreement / Disagreement

Participants present multiple approaches to solving the inequality, with no consensus on the preferred method or the final solution. Disagreements arise regarding the necessity of certain steps in the solution process.

Contextual Notes

Participants do not fully resolve the steps involved in the multiplication and factoring process, and there are assumptions about the behavior of the expressions involved that remain unexamined.

megacat8921
Messages
8
Reaction score
0
5/(x-1) - (2x)/(x+1) - 1 < 0

How does one solve this inequality?
 
Mathematics news on Phys.org
megacat8921 said:
5/(x-1) - (2x)/(x+1) - 1 < 0

How does one solve this inequality?

you can multiply by $(x-1)^2(x+1)^2$ (kindly note squared to have it positive and get

$5(x-1)(x+1)^2 - 2x(x-1)^2(x+1) - (x-1)^2(x+1)^2 \lt 0$
expand and factor LHS to get the result
 
Getting a common denominator and simplifying gives $$\dfrac{-3x^2+7x+6}{(x-1)(x+1)}<0$$.

Now construct sign diagrams for $$-3x^2+7x+6$$ and $$x^2-1$$.

You should arrive at $$x<-1,-\dfrac23<x<1$$ and $$x>3$$.
 
kaliprasad said:
you can multiply by $(x-1)^2(x+1)^2$ (kindly note squared to have it positive and get

$5(x-1)(x+1)^2 - 2x(x-1)^2(x+1) - (x-1)^2(x+1)^2 \lt 0$
expand and factor LHS to get the result

Why expand and factor? You can already pick out common factors...

$\displaystyle \begin{align*} 5 \left( x - 1 \right) \left( x + 1 \right) ^2 - 2x \left( x - 1 \right) ^2 \left( x + 1 \right) - \left( x - 1 \right) ^2 \left( x + 1 \right) ^2 &= \left( x - 1 \right) \left( x + 1 \right) \left[ 5 \left( x + 1 \right) - 2x \left( x - 1 \right) - \left( x - 1 \right) \left( x + 1 \right) \right] \\ &= \left( x- 1 \right) \left( x + 1 \right) \left( 5x + 5 - 2x^2 + 2x - x^2 + 1 \right) \\ &= \left( x - 1 \right) \left( x + 1 \right) \left( - 3x^2 + 7x + 6 \right) \\ &= \left( x - 1 \right) \left( x + 1 \right) \left( -3x^2 + 9x - 2x + 6 \right) \\ &= \left( x - 1 \right) \left( x + 1 \right) \left[ -3x \left( x - 3 \right) - 2 \left( x - 3 \right) \right] \\ &= - \left( x - 1 \right) \left( x + 1 \right) \left( x - 3 \right) \left( 3x + 2 \right) \end{align*}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K