Solve the problem involving the given double integral

Click For Summary
The discussion revolves around solving the double integral involving the expression $$\int_0^1 xy \cos (x^2y) dx$$. The user successfully applies a substitution method, letting $$u = x^2y$$, and calculates the inner integral, resulting in $$\dfrac{1}{2} \sin y$$. The outer integral is then evaluated, leading to a final result of $$\dfrac{1}{2}$$. Another participant suggests a more streamlined approach to presenting the solution, emphasizing clarity and the importance of structured argumentation in mathematical proofs. The conversation highlights the value of clear communication in complex calculations.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations
Integration
1701861831786.png


Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations: Integration

View attachment 336749

Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
Well, it is correct. I would prefer a single line of argumentation over those split equations you use. E.g.
\begin{align*}
\int_{0}^{\pi/2}\int_0^1 xy\,\cos(x^2y) \,dx \,dy&= \left.\int_{0}^{\pi/2}\int_{x=0}^{x=1} xy\,\cos(u)\,dx \,dy \quad\right| \;u:=x^2y\, , \,\dfrac{du}{dx}=2xy\, , \,xy\cdot dx=\dfrac{du}{2}\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \int_{u=0}^{u=y} \cos(u) \,du\,dy \\
&=\dfrac{1}{2}\int_{0}^{\pi/2}\left[\sin(u)\right]_0^y\;dy\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \sin(y)\,dy \\&=-\dfrac{1}{2} \left[\cos(y)\right]_{0}^{\pi/2}\\
&=-\dfrac{1}{2}\cdot (0-1)\\
&=\dfrac{1}{2}
\end{align*}
I think we should make a distinction between what we scribble down as a calculation and what we write down at the end. This has an additional advantage if things are more complicated than this. It forces you to reconsider the calculation step by step and discloses possible mistakes. As I said, this is very valuable in more complex situations, e.g. if your proof takes pages instead of lines. It's better to learn it with lines before it becomes pages.
 
Last edited:
  • Like
Likes Math100 and chwala
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...