Solve the problem involving the given double integral

Click For Summary
The discussion revolves around solving the double integral involving the expression $$\int_0^1 xy \cos (x^2y) dx$$. The user successfully applies a substitution method, letting $$u = x^2y$$, and calculates the inner integral, resulting in $$\dfrac{1}{2} \sin y$$. The outer integral is then evaluated, leading to a final result of $$\dfrac{1}{2}$$. Another participant suggests a more streamlined approach to presenting the solution, emphasizing clarity and the importance of structured argumentation in mathematical proofs. The conversation highlights the value of clear communication in complex calculations.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations
Integration
1701861831786.png


Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations: Integration

View attachment 336749

Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
Well, it is correct. I would prefer a single line of argumentation over those split equations you use. E.g.
\begin{align*}
\int_{0}^{\pi/2}\int_0^1 xy\,\cos(x^2y) \,dx \,dy&= \left.\int_{0}^{\pi/2}\int_{x=0}^{x=1} xy\,\cos(u)\,dx \,dy \quad\right| \;u:=x^2y\, , \,\dfrac{du}{dx}=2xy\, , \,xy\cdot dx=\dfrac{du}{2}\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \int_{u=0}^{u=y} \cos(u) \,du\,dy \\
&=\dfrac{1}{2}\int_{0}^{\pi/2}\left[\sin(u)\right]_0^y\;dy\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \sin(y)\,dy \\&=-\dfrac{1}{2} \left[\cos(y)\right]_{0}^{\pi/2}\\
&=-\dfrac{1}{2}\cdot (0-1)\\
&=\dfrac{1}{2}
\end{align*}
I think we should make a distinction between what we scribble down as a calculation and what we write down at the end. This has an additional advantage if things are more complicated than this. It forces you to reconsider the calculation step by step and discloses possible mistakes. As I said, this is very valuable in more complex situations, e.g. if your proof takes pages instead of lines. It's better to learn it with lines before it becomes pages.
 
Last edited:
  • Like
Likes Math100 and chwala
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
842
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K