Solve the problem involving the given double integral

Click For Summary
SUMMARY

The discussion focuses on solving the double integral $$\int_0^{\pi/2}\int_0^1 xy \cos(x^2y) \,dx \,dy$$ using substitution and integration techniques. The inner integral is transformed by letting $$u = x^2y$$, leading to a simplified evaluation of the integral. The final result is confirmed to be $$\dfrac{1}{2}$$ after evaluating the outer integral $$\dfrac{1}{2} \int_0^{0.5\pi} \sin y \,dy$$. Participants emphasize the importance of clear argumentation in calculations to avoid mistakes, especially in complex proofs.

PREREQUISITES
  • Understanding of double integrals and their applications
  • Familiarity with substitution methods in integration
  • Knowledge of trigonometric integrals, specifically sine and cosine functions
  • Ability to perform integration by parts and evaluate definite integrals
NEXT STEPS
  • Study advanced techniques in double integrals, including polar coordinates
  • Learn about integration by substitution in greater depth
  • Explore the properties of trigonometric integrals and their applications
  • Practice solving complex double integrals with varying limits
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to enhance their problem-solving skills in advanced mathematics.

chwala
Gold Member
Messages
2,828
Reaction score
422
Homework Statement
see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations
Integration
1701861831786.png


Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations: Integration

View attachment 336749

Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
Well, it is correct. I would prefer a single line of argumentation over those split equations you use. E.g.
\begin{align*}
\int_{0}^{\pi/2}\int_0^1 xy\,\cos(x^2y) \,dx \,dy&= \left.\int_{0}^{\pi/2}\int_{x=0}^{x=1} xy\,\cos(u)\,dx \,dy \quad\right| \;u:=x^2y\, , \,\dfrac{du}{dx}=2xy\, , \,xy\cdot dx=\dfrac{du}{2}\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \int_{u=0}^{u=y} \cos(u) \,du\,dy \\
&=\dfrac{1}{2}\int_{0}^{\pi/2}\left[\sin(u)\right]_0^y\;dy\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \sin(y)\,dy \\&=-\dfrac{1}{2} \left[\cos(y)\right]_{0}^{\pi/2}\\
&=-\dfrac{1}{2}\cdot (0-1)\\
&=\dfrac{1}{2}
\end{align*}
I think we should make a distinction between what we scribble down as a calculation and what we write down at the end. This has an additional advantage if things are more complicated than this. It forces you to reconsider the calculation step by step and discloses possible mistakes. As I said, this is very valuable in more complex situations, e.g. if your proof takes pages instead of lines. It's better to learn it with lines before it becomes pages.
 
Last edited:
  • Like
Likes   Reactions: Math100 and chwala

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K