Solve the problem that involves Normal distribution

Click For Summary
SUMMARY

The discussion centers on solving a problem involving the Normal distribution, specifically calculating probabilities using Z-scores. The participants calculated Z-scores for a given value of 160, resulting in Z = -0.666666, which corresponds to a probability of Pr(-0.66666) = 0.3546. They also explored the calculation of Pr(X > 160) and the importance of using inequalities in probability statements. The final result derived was x1 = 263, calculated using the equation Z = (x1 - 200) / 60.

PREREQUISITES
  • Understanding of Normal distribution concepts
  • Familiarity with Z-scores and their calculations
  • Knowledge of probability density functions
  • Ability to interpret statistical tables for Z-scores
NEXT STEPS
  • Learn how to calculate probabilities using Z-scores in Normal distribution
  • Study the properties of continuous probability distributions
  • Explore the use of statistical tables for Z-scores
  • Investigate the implications of using inequalities in probability statements
USEFUL FOR

Students studying statistics, data analysts, and anyone interested in mastering Normal distribution calculations and probability assessments.

chwala
Gold Member
Messages
2,828
Reaction score
423
Homework Statement
See attached
Relevant Equations
stats
1654172872696.png
1654172908106.png
My interest is on part (c),
My take,

##Z=\dfrac{160−200}{60}=−0.666666##

##Pr(−0.66666)=0.3546##

##⇒\dfrac{x_1-200}{60}=1.05##

##x_1=63+200=263##

Yes, i am aware that they want the answer to ##5## significant figures...i just wanted to check the alternative method...
Appreciate your insight...
 
Physics news on Phys.org
What do you mean with the probability of -2/3? The density of the distribution there?
 
chwala said:
Homework Statement:: See attached
Relevant Equations:: stats

View attachment 302276View attachment 302277My interest is on part (c),
My take,

##Z=\dfrac{160−200}{60}=−0.666666##

##Pr(−0.66666)=0.3546##
One approach is to calculate P(X > 160). Your work should include the probabilities that some random variable is greater than or less than some number. Pr(-.66666) is meaningless as a probability, a pointed hinted at by the previous poster.

To get you started, calculate Pr(X > 160) = Pr(##\frac{X - 160}{60} > \frac{160 - 200}{60}##) = Pr(Z > -0.66667)##. That should give you a number that is larger than 0.6. You should then be able to find the Z score (and hence the X value) that gives you the correct probability, using a table of z-scores.
chwala said:
##⇒\dfrac{x_1-200}{60}=1.05##

##x_1=63+200=263##

Yes, i am aware that they want the answer to ##5## significant figures...i just wanted to check the alternative method...
Appreciate your insight...
 
Mark44 said:
One approach is to calculate P(X > 160). Your work should include the probabilities that some random variable is greater than or less than some number. Pr(-.66666) is meaningless as a probability, a pointed hinted at by the previous poster.

To get you started, calculate Pr(X > 160) = Pr(##\frac{X - 160}{60} > \frac{160 - 200}{60}##) = Pr(Z > -0.66667)##. That should give you a number that is larger than 0.6. You should then be able to find the Z score (and hence the X value) that gives you the correct probability, using a table of z-scores.
My point was that when ##z =-0.66666## Then the area subtended between the two x points would be equal to ##0.3546##
 
Maarten Havinga said:
What do you mean with the probability of -2/3? The density of the distribution there?
Yes I meant the density...I shouldn't have used term probability...I hope that makes sense...otherwise, I need to check again...and I should have used inequalities instead of equal sign...Will amend that later.
 
chwala said:
My point was that when ##z =-0.66666##
Then that is incorrect since Pr(Z = -0.66666) = 0. For a continuous probability, any probability statement should involve a random variable in an inequality.
 
  • Like
Likes   Reactions: chwala
It's OK, making mistakes is how we learn ;)
 
  • Like
Likes   Reactions: chwala
Maarten Havinga said:
It's OK, making mistakes is how we learn ;)

Yes, in my approach i first found the area bound by ##160## and ##X.## I found that to be; ##0.2454## then i took ##0.6-0.2454=0.3542## ...
chwala said:
Homework Statement:: See attached
Relevant Equations:: stats

View attachment 302276View attachment 302277My interest is on part (c),
My take,

##Z=\dfrac{160−200}{60}=−0.666666##

##Pr(−0.66666)=0.2454##

chwala said:
##⇒\dfrac{x_1-200}{60}=1.05##

##x_1=63+200=263##

Yes, i am aware that they want the answer to ##5## significant figures...i just wanted to check the alternative method...
Appreciate your insight...

chwala said:
Homework Statement:: See attached
Relevant Equations:: stats

View attachment 302276View attachment 302277My interest is on part (c),
My take,

##Z=\dfrac{160−200}{60}=−0.666666##

##Pr(−0.66666)=0.3546##

##⇒\dfrac{x_1-200}{60}=1.05##

##x_1=63+200=263##

Yes, i am aware that they want the answer to ##5## significant figures...i just wanted to check the alternative method...
Appreciate your insight...
I made a mistake ...find the corrected version here;

My interest is on part (c),
My take,

##Z=\dfrac{160−200}{60}=−0.666666##

##Pr(−0.66666)=0.2454##

##0.6-0.2454=0.3542##

##0.3542= Z_{1.05}## Therefore

##⇒\dfrac{x_1-200}{60}=1.05##

##x_1=63+200=263##

Yes, i am aware that they want the answer to ##5## significant figures...i just wanted to check the alternative method...
Appreciate your insight...
 
  • Like
Likes   Reactions: Maarten Havinga

Similar threads

  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
955
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 12 ·
Replies
12
Views
12K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 14 ·
Replies
14
Views
4K