Solve the trigonometric equation

Click For Summary
SUMMARY

The trigonometric equation $\sin^6 a + \cos^6 a = 0.25$ can be solved using algebraic identities and substitutions. Specifically, the equation can be rewritten using the identity $\sin^2 a + \cos^2 a = 1$, leading to a simpler form that can be analyzed for solutions. The discussion highlights the importance of recognizing patterns in trigonometric identities to facilitate problem-solving. Participants emphasize the need for thorough verification of proofs to ensure accuracy.

PREREQUISITES
  • Understanding of trigonometric identities, specifically $\sin^2 a + \cos^2 a = 1$.
  • Familiarity with algebraic manipulation of polynomial equations.
  • Knowledge of the properties of sine and cosine functions.
  • Experience with solving equations involving powers of trigonometric functions.
NEXT STEPS
  • Explore the derivation of $\sin^6 a + \cos^6 a$ using algebraic identities.
  • Learn about the application of the binomial theorem in trigonometric equations.
  • Investigate the graphical representation of trigonometric functions to visualize solutions.
  • Study advanced techniques for solving polynomial equations in trigonometry.
USEFUL FOR

Mathematics students, educators, and anyone interested in solving complex trigonometric equations will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\sin^6 a+\cos^6 a=0.25$.
 
Mathematics news on Phys.org
anemone said:
Solve the equation $\sin^6 a+\cos^6 a=0.25$.

using $x^3+y^3 = (x+y)^3 - 3xy(x+y)$ and $a= \sin^2 a$ and $y = \cos^2 a$

we get $\sin^6 a+\cos^6 a = 1- 3\sin^2a \cos^2 a = .25$
or $3\sin^2a \cos^2 a= .75$
or $4\sin^2a \cos^2 a= 1$
or $\sin^22 a = 1$
or $\sin 2a = \pm1$
or $2a = n\pi\pm \frac{\pi}{2}$

hence $a= \frac{ n\pi\pm \frac{\pi}{2}}{2}$

or $a = (\frac{n}{2}\pm\frac{1}{4})\pi$

because we are taking $\pm{1/4}$ from integer and half integer we can simplify above as
$a = (n\pm\frac{1}{4})\pi$
 
Hello, anemone!

Solve: $\;\sin^6\!x+\cos^6\!x\:=\:\frac{1}{4}$
$\text{Factor: }$
$\quad\underbrace{(\sin^2\!x + \cos^2\!x)}_{\text{This is 1}}(\sin^4\!x - \sin^2\!x\cos^2\!x + \cos^4\!x) \:=\:\frac{1}{4}$

$\begin{array}{c}\sin^4\!x- \sin^2\!x(1-\sin^2\!x) + (1-\sin^2\!x)^2 \:=\:\frac{1}{4} \\ \\
\sin^4\!x - \sin^2\!x +\sin^4\!x + 1 - 2\sin^2\!x + \sin^4\!x \:=\:\frac{1}{4} \\ \\3\sin^4\!x - 3\sin^2\!x + \frac{3}{4} \;=\;0 \\ \\
\frac{3}{4}(4\sin^4\!x - 4\sin^2\!x + 1) \;=\;0 \\ \\
(2\sin^2\!x - 1)^2 \;=\;0 \\ \\
2\sin^2\!x - 1 \;=\;0 \\ \\
2\sin^2\!x \:=\:1 \\ \\
\sin^2\!x \:=\:\frac{1}{2} \\ \\
\sin x \:=\:\pm\frac{1}{\sqrt{2}} \\ \\
x \;=\;\begin{Bmatrix}\frac{\pi}{4} + \pi n \\ \frac{3\pi}{4} + \pi n \end{Bmatrix}
\end{array}$
 
Last edited by a moderator:
anemone said:
Solve the equation $\sin^6 a+\cos^6 a=0.25$.

Great problem, Anemone! (Sun)I'm sure at least one of the other proofs is the same, but I'm not going to check until after I've posted... (Bandit)

$$\cos^2 a= 1-\sin^2 a$$

Let $$x=\sin^2a, \quad \Rightarrow$$

$$x^3+(1-x)^3 = 1/4 = $$

$$x^3 + (1-3x+3x^2-x^3) = 3x^2-3x+1$$Hence $$3x^2-3x+\frac{3}{4} = 0 \Leftrightarrow$$

$$x= \frac{1}{2}$$

and

$$a = \pm \sin^{-1}\sqrt{x} = \pm \sin^{-1}\frac{1}{\sqrt{2}} =\pm \frac{\pi}{4}$$
 

Similar threads

  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K